Нейрофизиология моторного воображения в практике нейрореабилитации и технологии ИМК

Аннотация

Последние несколько десятилетий моторное воображение привлекает внимание исследователей как прототип «воплощенного познания», а также в качестве основы для нейрореабилитации и взаимодействия мозг – компьютер. В настоящем обзоре раскрываются понятие моторного воображения, факторы, характеризующие и влияющие на этот процесс, его нейронные корреляты и возможности для применения в нейрореабилитации и технологии интерфейс «мозг – компьютер». Объясняются некоторые расхождения и изменчивость результатов предыдущих исследований, что поможет оптимизировать дизайн исследований в соответствии с целью каждого исследования в будущем.

Конфликт интересов: не заявлен.

Список литературы

1. Liang N, Ni Z, Takahashi M, Murakami T, et al. Effects of motor imagery are dependent on motor strategies.Neuroreport. 2007;6;18(12):1241–5. doi: 10.1097/WNR.0b013e3282202707 PMID: 17632275

2. Mizuguchi N, Umehara I, Nakata H, Kanosue K. Modulation of corticospinal excitability dependent upon imagined force level. Exp. Brain Res. 2013;230(2):243–9. doi: 10.1007/s00221-013-3649-3 PMID: 23877227

3. Stinear CM, Byblow WD. Motor imagery of phasic thumb abduction temporally and spatially modulates corticospinal excitability. Clin Neurophysiol. 2003;114(5):909–14. doi: 10.1016/s1388-2457(02)00373-5 PMID: 12738438

4. Grush R. The emulation theory of representation: motor control, imagery, and perception. Behav Brain Sci.2004;27(3):377–96; discussion 396–442. PMID: 15736871

5. Bonnard M, Gallea C, De Graaf JB, Pailhous J. Corticospinal control of the thumb-index grip depends on precision of force control: a transcranial magnetic stimulation and functional magnetic resonance imagery study in humans. Eur J Neurosci. 2007;25(3):872–80. doi: 10.1111/j.1460-9568.2007.05320.x PMID: 17328782

6. Mizuguchi N, Nakata H, Kanosue K. Effector-independent brain activity during motor imagery of the upper and lower limbs: an fMRI study. Neurosci Lett. 2014;3;581:69–74. doi: 10.1016/j.neulet.2014.08.025 PMID: 25150928

7. Guillot A, Di Rienzo F, Macintyre T, et al. Imagining is not doing but involves specific motor commands: a review of experimental data related to motor inhibition. Front Hum Neurosci. 2012;6:247.

8. Hanakawa T, Dimyan MA, Hallett M. 2008. Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cereb Cortex. 2008;18(12):2775–88. doi: 10.1093/cercor/bhn036PMID: 18359777

9. Osuagwu BA, Vuckovic A. Similarities between explicit and implicit motor imagery in mental rotation of hands: an EEG study. Neuropsychologia. 2014;65:197–210. doi: 10.1016/j.neuropsychologia.2014.10.029 PMID: 25446966

10. Rizzolatti G, Sinigaglia C. The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci. 2010;11(4):264–74. doi: 10.1038/nrn2805 PMID: 20216547

11. Kraskov A, Dancause N, Quallo MM, et al. Corticospinal neurons in macaque ventral premotor cortex with mirror properties: a potential mechanism for action suppression? Neuron. 2009;64(6):922–30. doi: 10.1016/j.neuron.2009.12.010 PMID: 20064397

12. Vigneswaran G, Philipp R, Lemon RN, Kraskov A. M1 corticospinal mirror neurons and their role in movement suppression during action observation. Curr Biol. 2013;23(3):236–43. doi: 10.1016/j.cub.2012.12.006 PMID: 23290556

13. Bidet-Caulet A, Voisin J, Bertrand O, Fonlupt P. Listening to a walking human activates the temporal biological motion area. NeuroImage. 2005;28(1):132–9 doi: 10.1016/j.neuroimage.2005.06.018 PMID: 16027008

14. Harris R, de Jong BM. Cerebral activations related to audition-driven performance imagery in professional musicians. PLoS One. 2014;9(4):e93681. doi: 10.1371/journal.pone.0093681 PMID: 24714661

15. Naito E, Roland PE, Ehrsson HH. I feel my hand moving: a new role of the primary motor cortex in somatic perception of limb movement. Neuron. 2002;36(5):979–88. doi: 10.1016/s0896-6273(02)00980-7 PMID: 12467600

16. Naito E, Matsumoto R, Hagura N, et al. Importance of precentral motor regions in human kinesthesia: a single case study. Neurocase. 2011;17(2):133–47. doi: 10.1080/13554794.2010.498428 PMID: 20830645

17. Ionta S, Heydrich L, Lenggenhager B, et al. Multisensory mechanisms in temporo-parietal cortex support self-location and first-person perspective. Neuron. 2011;70(2):363–74. doi: 10.1016/j.neuron.2011.03.009 PMID: 21521620

18. Guillot A, Collet C, Nguyen VA, et al. Brain activity during visual versus kinesthetic imagery: an fMRI study. Hum Brain Mapp. 2009;30(7):2157–72. doi: 10.1002/hbm.20658 PMID: 18819106

19. Ruby P, Decety J. Effect of subjective perspective taking during simulation of action: a PET investigation of agency. Nat Neurosci. 2001;4(5):546–550. doi: 10.1038/87510 PMID: 11319565

20. Ehrsson HH, Geyer S, Naito E. Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations. J Neurophysiol. 2003;90(5):3304–3316. doi: 10.1152/jn.01113.2002 PMID: 14615433

21. Iseki K, Hanakawa T, Shinozaki J, et al. Neural mechanisms involved in mental imagery and observation of gait. NeuroImage. 2008;41(3):1021–31. doi: 10.1016/j.neuroimage.2008.03.010 PMID: 18450480

22. Lotze M, Montoya P, Erb M. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci. 1999;11(5):491–501. PMID: 10511638

23. Naito E, Kochiyama T, Kitada R. Internally simulated movement sensations during motor imagery activate cortical motor areas and the cerebellum. J Neurosci. 2002a;22(9):3683–3691. doi: 20026282 PMID: 11978844

24. Stinear CM, Byblow WD, Steyvers M et al. Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Exp Brain Res. 2006;168:157–164.

25. Hanakawa T, Parikh S, Bruno MK, Hallett M. Finger and face representations in the ipsilateral precentral motor areas in humans. J Neurophysiol. 2005;93(5):2950–2958. doi: 10.1152/jn.00784.2004 PMID: 15625099

26. Malouin F, Richards CL, Jackson PL. Brain activations during motor imagery of locomotor-related tasks: a PET study. Hum Brain Mapp. 2003;19(1):47–62. doi: 10.1002/hbm.10103 PMID: 12731103

27. Hanakawa T, Hosoda C, Shindo S, Honda M. Mental rotation of hands and feet involves somatotopically organized brain regions. Neurosci Res. 2007;58:60.

28. Buccino G, Binkofski F, Fink GR, et al. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur . Neurosci. 2001;13(2):400–404. PMID: 11168545

29. Xu L, Zhang H, Hui M, Long Z, et al. Motor execution and motor imagery: a comparison offunctional connectivity patterns based on graph theory. Neuroscience. 2014;261:184–94. doi: 10.1016/j.neuroscience.2013.12.005.PMID: 24333970

30. Hanakawa T. Rostral premotor cortex as a gateway between motor and cognitive networks. Neurosci Res. 2011;70(2):144–54. doi: 10.1016/j.neures.2011.02.010 PMID: 21382425

31. Park CH, Chang WH, Lee M, et al. Which motor cortical region best predicts imagined movement? NeuroImage. 2015;113:101–10. doi: 10.1016/j.neuroimage.2015.03.033 PMID: 25800212

32. Kasahara K, DaSalla CS, Honda M, Hanakawa T. Neuroanatomical correlates of brain–computer interface performance. NeuroImage. 2015;110:95–100. doi: 10.1016/j.neuroimage.2015.01.055 PMID: 25659465

33. Aflalo T, Kellis S, Klaes C, et al. Neurophysiology. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science. 2015;348(6237):906–10. doi: 10.1126/science.aaa5417 PMID: 25999506

34. Cui H, Andersen RA. Different representations of potential and selected motor plans by distinct parietal areas. J Neurosci. 2011;31(49):18130–6. doi: 10.1523/JNEUROSCI.6247-10.2011 PMID: 22159124

35. Schwoebel J, Boronat CB, Branch Coslett H. The man who executed "imagined" movements: evidence for dissociable components of the body schema. Brain Cognit. 2002;50(1):1–16. PMID: 12372347

36. Duque J, Labruna L, Verset S, et al. Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation. J Neurosci. 2012;32(3):806–16. doi: 10.1523/JNEUROSCI.4299-12.2012 PMID: 22262879

37. Kroeger J, Baumer T, Jonas M, et al. Charting the excitability of premotor to motor connections while withholding or initiating a selected movement. Eur J Neurosci. 2010;32:1771–1779.

38. Dominey P, Decety J, Broussolle E, et al. Motor imagery of a lateralized sequential task is asymmetrically slowed in hemi-Parkinson’s patients. Neuropsychologia. 1995;33(6):727–741. doi: 10.1016/0028-3932(95)00008-q PMID: 7675164

39. Grush R. The emulation theory of representation: motor control, imagery, and perception. Behav Brain Sci. 2004;27(3):377–396 (discussion 396–442). PMID: 15736871

40. Sharma N, Pomeroy VM, Baron JC. Motor imagery: a backdoor to the motor system after stroke? Stroke: J Cereb Circ. 2006;37(7):1941–1952. doi: 10.1161/01.STR.0000226902.43357.fc PMID: 16741183

41. Butler AJ, Page SJ. Mental practice with motor imagery: evidence for motor recovery and cortical reorganization after stroke. Arch Phys Med Rehabil. 2006;87:S2–S11. doi: 10.1016/j.apmr.2006.08.326 PMID: 17140874

42. Page SJ, Szaflarski JP, Eliassen JC, Pan H, Cramer SC. Cortical plasticity following motor skill learning during mental practice in stroke. Neurorehabi. Neural Repair. 2009;23(4):382–8. doi: 10.1177/1545968308326427 PMID: 19155350

43. Page SJ, Levine P, Leonard A. Mental practice in chronic stroke: results of a randomized, placebo-controlled trial. Stroke. 2007;38(4):1293–7. doi: 10.1161/01.STR.0000260205.67348.2b PMID: 17332444

44. Liu KP, Chan CC, Wong RS, et al. A randomized controlled trial of mental imagery augment generalization of learning in acute poststroke patients. Stroke. 2009;40(6):2222–5. doi: 10.1161/STROKEAHA.108.540997 PMID: 19390069

45. Wolpaw JR, McFarland DJ. Control of a two-dimensional movement signal by a noninvasive brain–computer interface in humans. Proc Natl Acad Sci USA. 2004;101:17849–17854.

46. Takeuchi N, Mori T, Nishijima K, et al. Inhibitory transcranial direct current stimulation enhances weak beta event-related synchronization after foot motor imagery in patients with lower limb amputation. J Clin Neurophysiol. 2015;32(1):44–50. doi: 10.1097/WNP.0000000000000123 PMID: 25159737

47. Pichiorri F, Morone G, Petti M, et al. Brain–computer interface boosts motor imagery practice during stroke recovery. Ann Neurol. 2015;77(5):851–65. doi: 10.1002/ana.24390 PMID: 25712802

48. Ramos-Murguialday A, Broetz D, Rea M. Brain–machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol. 2013;74:100–108.

49. Shindo K, Kawashima K, Ushiba J. Effects of neurofeedback training with an electroencephalogram-based brain–computer interface for hand paralysis in patients with chronic stroke: a preliminary case series study. J Rehabil Med. 2011;43(10):951–7. doi: 10.2340/16501977-0859 PMID: 21947184

Для цитирования

Коровина Е.С., Сергеева М.С., Захаров А.В., Пятин В.Ф. Нейрофизиология моторного воображения в практике нейрореабилитации и технологии ИМК. Наука и инновации в медицине. 2019;4(3):30-35. doi: 10.35693/2500-1388-2019-4-3-30-35

Заявка

Отправьте онлайн-заявку на публикацию

Оформить