Robotic Systems for Special and Medical Intelligent Assistance

Аннотация

Exoskeletons gradually come to all spheres of human activities – from building houses to sports, from medicine to military usage. Exoskeleton complexes are rapidly developing with the help of 3D printing, microwires, new sources of energy and computing power.

Russian developers are actively participating in this process, and their results keep up with the results of their foreign competitors. So these teams have a good chance to become market leaders in exoskeleton technologies for a wide range of applications.

Aim. Analysis of condition and determination of the main directions of development of robotic systems for special and medical intelligent assistance.

Methods. The study involved a complex of methods of designing of robotic systems and evaluation of their mechanic characteristics and managing principles, such as method of movement modeling, method of managing robotic systems based on biologically suitable principles, method of automatic interaction between robotic device and BCI, method of remote control of robotic systems etc. All these methods helped to develop the best possible models of exoskeleton robotic systems.

Conclusion. The key problems of Russian developers of robotic systems for intelligent assistance are the technological dependence on foreign suppliers and a lack of qualified personnel. The most promising directions of development are the development of lower-extremity exoskeleton and specific exoskeleton complexes.

Список литературы

1. Vorobiev AA, Petruhin AV. Exoskeleton – new opportunities for habilitation and rehabilitation (Analytical Review). Voprosy konstruktivnoi i plasticheskoi khirurgii. 2015. No.2 (53): P.52-62. (In Russ.).

2. Report on the application of scientific research and experimental development. №115122310008. GAP-processing complex of scientific and technical solutions direсted at the creation of rehabilitation robotic systems with functions of intelligent assistance in the movements of patients with neurological disorders. Nizhny Novgorod, 2015. (In  Russ.). https://xpir.ru/conference2015/theses/14.578.21.0107

3. Pavlovsky VE, Platonov AK. Biomechanical complex neurorehabilitation — design, model management. XII Vserossiiskoe soveshchanie po problemam upravleniya VSPU-2014. M.,2014: 3671-3680. (In Russ.).

4. Nef T, Mihelj M, Kiefer G, Perndl C, Müller R, Riener R. ARM in Exoskeleton for Arm Therapyin Stroke Patients. Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics (June 12-15, Noordwijk, The Netherlands). 2007: 68-74.

5. Gupta A, O'Malley MK, Patoglu V, Burgar C. Design, Control and Performance of Rice Wrist: A Force Feedback Wrist Exoskeleton for Rehabilitation and Training. International Journal of Robotics Research in 2008 (27):233-251.

6. Nef T., Guidali M, Riener R. ARM in III — arm therapy exoskeleton with an ergonomic shoulder actuation. Applied Bionics and Biomechanics. June 2009. Vol. 6(2):127-142.

7. Schabowsky CN, Godfrey SB, Holley RJ, Lum PS. Development and pilot testing of HEXORR: Hand EXOskeleton Rehabilitation Robot. Journal of Neuro Engineering and Rehabilitation. 2010:7-36.

8. Zoss AB, Kazerooni H, Chu A. Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX). Asme Transactions On Mechatronics. 2006. V.11(2)128-137.

9. Perry JC, Rosen J, Burns S. Upper-Limb Powered Exoskeleton Design. IEEE. As me Transactionson Mechatronics. 2007. V. 12.(4):408-417.

10. Tsagarakis NG, Galdwell DG. Development and Control of a "Soft-Actuated" Exoskeleton for Use in Physiotherapy and Training. Kluwer Academic Publishers. Manufactured in The Netherlands. Autonomous Robots 15.2003:21-33.

11. Veneman JF, Kruidhof R, Hekman EG, Ekkelenkamp R, Van Asseldonk EHF, Kooij H. Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation.IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007. V.15(3)379-386.

12. WalshCJ, EndoK, Herr H. AQUASI-PASSIVELEG Exoskeleton for Load-carrying Augmentation. International Journal of Humanoid Robotics. 2007. V. 4(3):487-506.

13. Turlapov RN. Modeli i algoritm yupravleniya dvizheniem ekzoskeleta dlya reabilitatsii i rasshireniya funktsional'nykh vozmozhnostei cheloveka. Dis…kand. tekhnicheskikh nauk. Kursk, 2016. (In Russ.). http://www.dslib.net/med-pribory/modeli-i-algoritmy-upravlenija-dvizheniem-jekzoskeleta-dlja-vertikalizacii-i.html

14. Balovnev DA. Multimodal user interfaces with modern technical means rehabilitation. Materialy VII mezhdunarodnogo kongressa «Neiroreabilitatsiya – 2015».M., 2015:16-18. (InRuss.). http://rehabrus.ru/Docs/neyroreabilitacia-2015-25may.pdf

15. Pat. 115712 Russian Federation, MPK7 B25J15 / 12. The utility model «Hand grip»/ Bogdanov AA, Kanayeva EI, Kiyatkin DV, Kutlubaev IM, Permyakov AF. (In Russ.). http://www1.fips.ru

16. Pat. 125508 Russian Federation, MPK7 B25J3 / 04. The utility model «Remote Manipulator». Bogdanov AA, Kiyatkin DV, Permyakov AF (in Russ.). http://www1.fips.ru

17. Pat. 86685 Russian Federation, IPCI (9), 15-99. Industrial design SAR-400. Bogdanov AA, Ixanov MR, Kiyatkin DV, Permyakov AF. (in Russ.). http://www1.fips.ru

18. Pat. 129867 Russian Federation, MPK7 B25J9 / 08. The utility model «Executive manipulator module». Bogdanov AA, Zhydenko IG, Kutlubaev IM, Kiyatkin DV, Permyakov AF. (In Russ.). http://www1.fips.ru

19. Pat. 135958 Russian Federation, MPK7 B25J17 /00. Полезная модель «Исполнительный модуль манипулятора». Sychkov VB, Zhydenko IG, Kutlubaev IM, Kiyatkin DV, Permyakov AF.(in Russ.). http://www1.fips.ru

20. Pat. 135956 Russian Federation, B25J3 / 00. The utility model «Master-slave manipulator». Bogdanov AA, Zhydenko IG, Kutlubaev IM, Kiyatkin DV, Perмyakov AF. (in Russ.). http://www1.fips.ru

21. Pat. 145920 Russian Federation, B25J15 / 10. The utility model «Hand grip». Permyakov AF, Kutlubaev IM, ZhydenkoIG. (In Russ.). http://www1.fips.ru

22. Pat. 144196 Russian Federation, B25J15 /10. The utility model «Gripper (hand prosthesis)». Permyakov AF, Bogdanov AA, Kutlubaeva YI. (in Russ.). http://www1.fips.ru

23. Pat. 146552 Russian Federation, B25J3/00. The utility model «Anthropomorphic manipulator». Permyakov AF, Bogdanov AA, Kutlubaev IM, Sychkov VB. (in Russ.). http://www1.fips.ru

24. Babushkina NA. Defining repertoire of motions of multiarticular hand exoskelet on managed by brain-computer interface (BCI). Proceedings of the VII International Congress "Neurorehabilitation - 2015" (Moscow, June 9-10, 2015). M., 2015:12-13. (in Russ.). http://rehabrus.ru/Docs/neyroreabilitacia-2015-25may.pdf

25. Biryukova EV, Pavlova OG. Recovery of motor function of the hand using hand exoskeleton managed by brain-computer interface. The case of a patient with extensive lesions of the brain structures. Fiziologiya cheloveka. 2016, V. 42(1):19-30. (in Russ.).

Для цитирования

Dudorov ЕА, Bogdanov АА, Permyakov AF. Robotic Systems for Special and Medical Intelligent Assistance. Science & Innovations in Medicine. 2016(3):83-88.

Request

Send an online application form to the publication

Send