Surface modification of Zr–Nb alloy by nanosecond pulse laser processing

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The effect of nanosecond pulse laser processing of the Zr–1% Nb alloy surface of specimens in the annealed state and after their two-stage deformation treatment by abc-pressing and rolling has been investigated. The morphology of the modified surface of specimens is described using optical and scanning microscopy. Furthermore, the microrelief formed as a result of vaporization and melting of a thin layer of material subjected to laser processing is evaluated quantitatively. Durometric measurements were conducted to ascertain the hardness of the near-surface layer and the impact of laser-induced shock waves on its hardness. The electron backscattering diffraction (EBSD) analysis data were employed to describe the structure of the specimens in the near-surface layer. The influence of the initial grain size on the quality of the modified surface, as well as on the depth and hardening of the near-surface layers has been established.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Petrova

Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: petrova@imp.uran.ru
Ресей, Ekaterinburg, 620108

I. Brodova

Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

Email: petrova@imp.uran.ru
Ресей, Ekaterinburg, 620108

V. Astafiev

Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

Email: petrova@imp.uran.ru
Ресей, Ekaterinburg, 620108

D. Rasposienko

Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

Email: petrova@imp.uran.ru
Ресей, Ekaterinburg, 620108

A. Kuryshev

Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

Email: petrova@imp.uran.ru
Ресей, Ekaterinburg, 620108

A. Balakhnin

Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences

Email: petrova@imp.uran.ru
Ресей, Perm, 614013

S. Uvarov

Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences

Email: petrova@imp.uran.ru
Ресей, Perm, 614013

O. Naimark

Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences

Email: petrova@imp.uran.ru
Ресей, Perm, 614013

Әдебиет тізімі

  1. Montross C.S., Tao Wei, Lin Ye, Graham Clark, Yiu-Wing Mai. Laser shock processing and its effects on microstructure and properties of metal alloys: a review // Intern. J. Fatigue. 2002. V. 24. P. 1021–1036.
  2. Masse G., Barreau J. Surface modification by laser induced shock waves // Surf. Eng. 1995. V. 11. P. 131–132.
  3. Dane C., Hackel L., Daly J. Shot peening with laser // Adv. Mater. Process. 1998. V. 153. P. 37–48.
  4. Zhang Y., You J., Lu J., Cui C., Jiang, Y., Ren X. Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy // Surf. Coat. Technol. 2010. V. 204. P. 3947–3953.
  5. Zhang H., Yu Ch. Laser shock processing of 2024-T62 aluminum alloy // Mater. Sci. Eng.: A. 1998. V. 257. № 2. P. 322–327.
  6. Montross C.S., Florea V., Swain M.V. Influence of coatings on sub-surface mechanical properties of laser peened 2011-T3 aluminum // J. Mater. Sci. 2001. V. 36. P. 1801–1807.
  7. Zhou L., Li Y.H., He W.F., Wang X.D., Li Q.P. Laser shock processing of Ni-base superalloy and high cycle fatigue properties // Mater. Sci. Forum. 2011. V. 697–698. P. 235–238.
  8. Banas G, Elsayed-Ali H.E., Lawrence F.V., Rigsbee J.M. Laser shock-induced mechanical and microstructural modification of welded maraging steel // J. Appl. Phys. 1990. V. 67. P. 2380–2384.
  9. Song Sh., Yizhou Sh., Zonghui Ch., Weibiao X., Zhaoru H., Shuangshuang S., Weilan L. Laser shock peening regulating residual stress for fatigue life extension of 30CrMnSiNi2A high-strength steel // Optics & Laser Technology. 2023. V. 169. P. 110094.
  10. Колобов Ю.Р., Манохин С.С., Бетехтин В.И., Кадомцев А.Г., Нарыкова М.В., Одинцова Г.В., Храмов Г.В. Исследование влияния обработки лазерными импульсами наносекундной длительности на микроструктуру и сопротивление усталости технически чистого титана // Письма в ЖТФ. 2022. Т. 48. № 2. С. 15–19.
  11. Clauer A.H. Laser shock peening for fatigue resistance // Surface performance of titanium. Warrendale (PA): TMS. 1996. P. 217–230.
  12. Ruschau J.J., John R., Thompson S.R., Nicholas T. Fatigue crack nucleation and growth rate behaviour of laser shock peened titanium // International Journal of Fatigue. 1999. V. 21. P. 199–209.
  13. Kamkarrad H., Narayanswamy S., Tao X.S. Feasibility study of high-repetition rate laser shock peening of biodegradable magnesium alloys // Int. Adv. Manuf. Technol. 2014. V. 74. P. 1237–1245.
  14. Hatamleh O.A. Comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints // Int. J. Fatigue. 2009. V. 31. P. 974–988.
  15. Trdan U., Grum J. Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarisation and ElS methods // Corros. Sci. 2012. V. 59. P. 324–333.
  16. Zhang X.C., Zhang Y.K., Lu J.Z., Xuan F.Z., Wang Z.D., Tu S.T. Improvement of fatigue life of Ti-6Al-4V alloy by laser shock peening // Materials Science and Engineering: A. 2010. V. 527. № 15. P. 3411–3415.
  17. Veiko V.P., Karlagina Yu.Yu., Egorova E.E., Zernitskaya E.A., Kuznetsova D.S., Elagin V.V., Zagaynova E.V., Odintsova G.V. In vitro investigation of laser-induced microgrooves on titanium surface // J. Phys.: Conf. Ser. 2020. V. 1571. P. 012010.
  18. Li Zh.Y., Guoa X.W., Yua Sh.J., Ninga Ch.M., Jiaob Y.J., Caia Zh.B. Influence of laser shock peening on surface characteristics and corrosion behavior of zirconium alloy // Mater. Characteriz. 2023. V. 206. P. 113387.
  19. Eroshenko A.Yu., Mairambekova A.M., Sharkeev Yu.P., Kovalevskaya Zh.G., Khimich M.A. Structure, phase composition and mechanical properties in bioinert zirconium-based alloy after severe plastic deformation // Letters Mater. 2017. Т. 7. № 4. P. 469–472.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Schematic diagram of the experimental setup (a) and external view of the sample surface treatment (b): 1 – laser head with lens; 2 – laser beam; 3 – laser radiation measurement point on the sample surface; 4 – water, 2 mm layer; 5 – treated sample (front view).

Жүктеу (314KB)
3. Fig. 2. Results of EBSD analysis of the fine-grain structure of the initial sample made of annealed alloy: a – orientation map; b – map of boundaries of structural elements; c – spectrum of boundaries of structural elements; d – distribution of grains with high-angle boundaries by size; d – distribution of grains and subgrains by size.

Жүктеу (961KB)
4. Fig. 3. Microstructure of the original ultra-microcrystalline sample. TEM: a – bright field; b – dark field in the 112αZr reflection.

Жүктеу (253KB)
5. Fig. 4. Tracks on the modified surface of the samples: a – MZ sample; b – UMK sample.

Жүктеу (713KB)
6. Fig. 5. Crater structure at different magnifications: a, c – MZ sample; b – UMK sample.

Жүктеу (670KB)
7. Fig. 6. Relief maps of modified surfaces: a – MZ sample; b – UMK sample. The values ​​of depth and height are indicated in µm.

Жүктеу (520KB)
8. Fig. 7. Relief profiles of the modified surface along the line: a – MZ sample; b – UMK sample.

Жүктеу (342KB)
9. Fig. 8. Knoop microhardness on the cross-section of samples after laser impact treatment.

Жүктеу (65KB)
10. Fig. 9. Complete diffraction patterns (a) and a section of diffraction patterns (b) of the MZ and UMC samples, change in the average integral width of X-ray peaks (c) before and after treatment.

Жүктеу (263KB)
11. Fig. 10. Results of EBSD analysis of the structure of the MG sample after laser processing: a – orientation map; b – map of boundaries of structural elements; c – distribution of grains and subgrains by size; d – spectrum of boundaries of structural elements.

Жүктеу (777KB)