A study of structure of metastable Cu–Zn alloys with shape memory effect

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Methods of transmission and scanning electron microscopy are used to study premartenstic states and their relation to martensitic transformations in the alloys Cu–38 wt% Zn and Cu–39.5 wt% Zn with shape memory effect. Analysis of the observed diffusion scattering of electrons is carried out, including in situ experiments at heating and cooling and the defect condition of the internal substructure of austenite and martensite. The crystallographic models of martensitic transitions β2 →β2′, β2 →β2′′, and β2 →γ2′ are proposed based on the crystallographic data obtained in the premartensitic state.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Svirid

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: svirid@imp.uran.ru
Ресей, Ekaterinburg, 620108

N. Kuranova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: svirid@imp.uran.ru
Ресей, Ekaterinburg, 620108

V. Pushin

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: svirid@imp.uran.ru
Ресей, Ekaterinburg, 620108

S. Afanas’ev

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: svirid@imp.uran.ru
Ресей, Ekaterinburg, 620108

Әдебиет тізімі

  1. Perkins J. Ed. Shape Memory Effects in Alloys. Plenum. London: UK, 1975. 583 p.
  2. Варлимонт Х., Дилей Л. Мартенситные превращения в сплавах на основе меди, серебра и золота. М.: Наука, 1980. 205 с.
  3. Ооцука К., Симидзу К., Судзуки Ю., Сэкигути Ю., Тадаки Ц., Хомма Т., Миядзаки С. Сплавы с эффектом памяти формы. М.: Металлургия, 1990. 224 с.
  4. Duering T.W., Melton K.L., Stockel D., Wayman C.M. (Eds.) Engineering Aspects of Shape Memory Alloys. Butterworth-Heineman: London, UK, 1990. 512 p.
  5. Хачин В.Н., Пушин В.Г., Кондратьев В.В. Никелид титана: Структура и свойства. Москва: Наука, 1992. 160 с.
  6. Пушин В.Г., Кондратьев В.В., Хачин В.Н. Предпереходные явления и мартенситные превращения. Екатеринбург: УрО РАН, 1998. 368 с.
  7. Лободюк В.А., Коваль Ю.Н., Пушин В.Г. Кристаллоструктурные особенности предпереходных явлений и термоупругих мартенситных превращений в сплавах цветных металлов // ФММ. 2011. Т. 111. № 2. С. 169–194.
  8. Bonnot E., Romero R., Mañosa L., Vives E., Planes A. Elastocaloric effect associated with the martensitic transition in shape-memory alloys // Phys. Rev. Lett. 2008. V. 100. P. 125901.
  9. Planes A., Mañosa L., Acet M. Magnetocaloric effect and its relation to shapememory properties in ferromagnetic Heusler alloys // J. Phys. Condensed Matter. 2009. V. 21. P. 233201.
  10. Cui J., Wu Y., Muehlbauer J., Hwang Y., Radermacher R., Fackler S., Wuttig M., Takeuchi I. Demonstration of high efficiency elastocaloric cooling with large δT using NiTi wires // Appl. Phys. Lett. 2012. V. 101. P. 073904.
  11. Mañosa L., Jarque-Farnos S., Vives E., Planes A. Large temperature span and giant refrigerant capacity in elastocaloric Cu–Zn–Al shape memory alloys // Appl. Phys. Lett. 2013. V. 103. P. 211904.
  12. Волков А.Е., Иночкина И.В. Модель обратимой памяти формы мартенситного типа в материалах с термоупругим превращением // Вестник ТГУ. 1998. Т. 3. С. 231–233.
  13. Razumov I., Gornostyrev Yu. Role of magnetism in lattice instability and martensitic transformation of Heusler alloys // Metals. 2023. V. 13. P. 843.
  14. Dasgupta R. A look into Сu-based shape memory alloys: Present Scenario and future prospects // J. Mater. Res. 2014. V. 29. № 16. P. 1681–1698.
  15. Pushin V., Kuranova N., Marchenkova E., Pushin A. Designand Development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based Alloys with High and Low Temperature Shape Memory Effects // Materials. 2019. V. 12. P. 2616–2640.
  16. Лукьянов А.В., Пушин В.Г., Куранова Н.Н., Свирид А.Э., Уксусников А.Н., Устюгов Ю.М., Гундеров Д.В. Влияние термомеханической обработки на структурно-фазовые превращения в сплаве Cu-14Al-3Ni с эффектом памяти формы, подвергнутом кручению под высоким давлением // ФММ. 2018. Т. 119. № 4. С. 393–401.
  17. Свирид А.Э., Лукьянов А.В., Пушин В.Г., Белослудцева Е.С., Куранова Н.Н., Пушин А.В. Влияние температуры изотермической осадки на структуру и свойства сплава Cu-14 мас.% Al-4 мас.% Ni с эффектом памяти формы // ФММ. 2019. Т. 120. С. 1257–1263.
  18. Свирид А.Э., Пушин В.Г., Куранова Н.Н., Белослудцева Е.С., Пушин А.В., Лукьянов А.В. Эффект пластификации сплава Cu-14Al-4Ni с эффектом памяти формы при высокотемпературной изотермической осадки // Письма в ЖТФ. 2020. Т. 46. C. 19–22.
  19. Свирид А.Э., Лукьянов А.В., Пушин В.Г., Куранова Н.Н., Макаров В.В., Пушин А.В., Уксусников А.Н. Применение изотермической осадки для мегапластической деформации beta-сплавов Cu–Al–Ni // ЖТФ. 2020. Т. 90. С. 1088–1094.
  20. Пушин В.Г., Куранова Н.Н., Макаров В.В., Свирид А.Э., Уксусников А.Н. Электронно-микроскопическое исследование метастабильных сплавов на основе Cu–Al–Ni с эффектом памяти формы // ФММ. 2021. Т. 122. С. 1196–1204.
  21. Pushin V.G., Kuranova N.N., Svirid A.E., Uksusnikov A.N., Ustyugov Y.M. Design and Development of High-Strength and Ductile Ternary and Multicomponent Eutectoid Cu-Based Shape Memory Alloys: Problems and Perspectives // Metals. 2022. V. 12. P. 1289 (32 pages).
  22. Sedlak P., Seiner H., Landa M., Novák V., Šittner P., Manosa L.I. Elastic Constants of bcc Austenite and 2H Orthorhombic Martensite in CuAlNi Shape Memory Alloy // Acta Mater. 2005. V. 53. P. 3643–3661.
  23. Hornbogen E. The effect of variables on martensitic transformation temperatures // Acta Met. 1985. V. 33. № 4. P. 595–601.
  24. Otsuka K., Wayman C.M., Kubo H. Diffuse Electron Scattering in β–phase alloys // Met. Trans. A. 1978. V. 9A. P. 1075–1085.
  25. Глезер А.М., Молотилов Б.В. Упорядочение и деформация сплавов железа. М.: Металлургия, 1984. 168 c.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. OM (a), SEM (b), TEM images (bright- (d) and dark-field in the superstructure reflection 001B2 (c)) of the microstructure and microelectron diffraction patterns (with the zone axis (z.) [110]B2 (d) and [331]B2 (e)) of Cu–39.5Zn (a, c, d) and Cu–38Zn (b, d, e) alloys after quenching from 800°C for 30 min. The structure was studied at CT.

Жүктеу (77KB)
3. Fig. 2. Bright-field TEM images of tweed contrast (a, b) and the corresponding microelectron diffraction pattern ((c) — o.z. [100]B2) of the two-phase (β2+3R)-alloy Cu–38Zn at RT.

Жүктеу (31KB)
4. Fig. 3. Bright-field TEM images of tweed contrast (a, b) and corresponding microelectron diffraction patterns ((c) — [111]B2 RC and (d) — [110]B2 RC) of single-phase β2-alloy Cu–39.5Zn at RT.

Жүктеу (44KB)
5. Fig. 4. Bright-field TEM images of tweed contrast (a, b) and corresponding microelectron diffraction patterns ((c) — o.z. [711]B2 and (d) — o.z. [311]B2) of single-phase β2-alloy Cu–39.5Zn at –100°C.

Жүктеу (49KB)
6. Fig. 5. Spectra of atomic displacement waves in the form of flat cross sections (001)*, (110)*, and (111)* of the reciprocal k-space (a) and in the vicinity of the reciprocal lattice nodes in the (001)* and (110)* planes (b, c). The ek projections for k waves of increased amplitude and, consequently, more intense diffuse scattering are shown by dots, arrows, or dashes.

Жүктеу (22KB)
7. Fig. 6. Schemes of shuffling displacements providing transformations of the cubic lattice B2 according to the PSS-I (a) and PSS-II (b) types in Cu–Zn alloys.

Жүктеу (14KB)
8. Fig. 7. Intensity profiles during scanning of diffuse scattering along non-radial strands with satellites of the 1/6 <110>*, 1/3 <110>*, 1/2 <110>* type in microelectron diffraction patterns with the [100]B2 Cu–38Zn (a) and the [111]B2 Cu–39.5Zn alloy (b). Solid thin black lines represent intensity profiles, solid bold lines represent profiles calculated using the Gaussian function, dashed lines represent calculated profiles for satellites of the 1/6 <110>*, 1/3 <110>*, 1/2 <110>* type.

Жүктеу (54KB)
9. Fig. 8. Light- (a, c) and dark-field (b) images of the microstructure of twinned β2′ (3R) (a, b) and long-period β2″ (9R) (c, d) martensite in the 3R reflection of the twin (with the [010]3R R.C. close to [111]B2) and the corresponding electron diffraction patterns ((b) — in the inset, (d) — with the [010]2H R.C. close to [111]B2) of the Cu–38Zn alloy.

Жүктеу (29KB)
10. Fig. 9. Light- (a, c) and dark-field (b) TEM images of the microstructure of orthorhombic β2″(9R) (a, b, d, d) and hexagonal γ2′(2H) martensite (c, e) and the corresponding electron diffraction patterns (with R.E. [010]9R (d, e), close to [111]B2, and R.E. [010]2H (e)) of the Cu–39.5Zn alloy. Observations at a temperature of –150°C.

Жүктеу (64KB)
11. Fig. 10. Schemes of the restructuring of the crystal lattice of the B2→3R (ABC), B2→9R (a) and B2→2H (AB) martensite (b) types in Cu–Zn alloys.

Жүктеу (16KB)