Phase transformations upon crystallization of an Al87Ni6Nd7 amorphous alloy

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The crystallization process of an Al87Ni6Nd7 amorphous alloy has been studied. It has been established that the crystallization of an amorphous alloy occurs in three stages, and the temperatures and activation energies of each crystallization stage have been determined. At the first crystallization stage, Al nanocrystals are formed; at the second stage, in addition to Al nanocrystals, the crystals of an Al11Nd3 phase are precipitated from the remaining amorphous phase. At the third crystallization stage, a previously unknown crystalline phase is formed. The structure of the new phase has been determined.

Sobre autores

P. Uzhakin

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: uzhakin@issp.ac.ru
Rússia, ул. Акад. Осипьяна, 2, Московская обл., Черноголовка, 142432

V. Chirkova

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Email: uzhakin@issp.ac.ru
Rússia

N. Volkov

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Email: uzhakin@issp.ac.ru
Rússia

G. Abrosimova

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Email: uzhakin@issp.ac.ru
Rússia

A. Aronin

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Email: uzhakin@issp.ac.ru
Rússia, Chernogolovka, 142432

Bibliografia

  1. Свирид А.Э., Пушин В.Г., Куранова Н.Н., Макаров В.В., Уксусников А.Н. Влияние термообработки на структуру и механические свойства нанокристаллического сплава Cu–14Al–3Ni, полученного кручением под высоким давлением // ФММ. 2021. Т. 122. № 9. С. 948–956. https://doi.org/10.31857/S0015323021090138
  2. Петрова А.Н., Бродова И.Г., Разоренов С.В., Шорохов Е.В., Акопян Т.К. Механические свойства Al–Zn–Mg–Fe–Ni-сплава эвтектического типа при разных скоростях деформации // ФММ. 2019. Т. 120. № 12. С. 1322–1328. https://doi.org/10.1134/s0015323019120131
  3. Бродова И.Г., Ширинкина И.Г., Астафьев В.В., Балушкин С.В., Куликов Г.В., Симонов А.Ю. Структурные исследования и реология схождения толстостенных оболочек из Al–Mg сплава // ФММ. 2023. Т. 124. № 12. С. 1211–1219. https://doi.org/10.31857/S0015323023600922
  4. Куранова Н.Н., Макаров В.В., Пушин В.Г. Атомная структура сплава Ti2NiCu после интенсивной пластической деформации кручением под высоким давлением и термообработки // ФММ. 2023. Т. 124. № 12. С. 1253–1260. https://doi.org/10.31857/S0015323023601502
  5. Занаева Э.Н., Базлов А.И., Убыйвовк Е.В., Милькова Д.А. Аморфные сплавы системы Fe–Co–Cr–B–Si для разработки наноструктурированных магнитотвердых материалов // ФММ. 2023. Т. 124. № 6. С. 453–459. https://doi.org/10.31857/s001532302360050
  6. Фирсова А.Г., Табачкова Н.Ю., Базлов А.И. Влияние высокотемпературной прокатки и отжига на структуру и свойства аморфного сплава на основе циркония // ФММ. 2021. Т. 122. № 8. С. 845–850. https://doi.org/10.31857/s0015323021080064
  7. Louzguine D.V., Inoue A. Crystallization behaviour of Al-based metallic glasses below and above the glass-transition temperature // J. Non-Cryst. Solids. 2002. V. 311. № 3. P. 281. https://doi.org/10.1016/s0022-3093(02)01375-3
  8. Perepezko J.H. Nucleation-controlled Reactions and Metastable Structures // Prog. Mater. Sci. 2004. V. 49. № 3–4. P. 263–284. https://doi.org/10.1016/S0079-6425(03)00028-8
  9. Louzguine-Luzgin D., Inoue A. Nano-devitrification of glassy alloys // J. Nanosci. Nanotechnol. 2005. V. 5. P. 999. https://doi.org/10.1166/jnn.2005.158
  10. Mu J., Fu H., Zhu Z., Wang A., Li H., Hu Z.Q., Zhang H. Synthesis and properties of Al–Ni–La bulk metallic glass // Adv. Eng. Mater. 2009. V. 11. № 7. P. 530–532. https://doi.org/10.1002/adem.200900100
  11. Yang B.J., Yao J.H., Chao Y.S., Wang J.Q., Ma E. Developing aluminum-based bulk metallic glasses // Phil. Mag. 2010. V. 90. № 23. P. 3215–3231. https://doi.org/10.1080/14786435.2010.484401
  12. Tkach V.I., Rassolov S.G., Popov V.V., Maksimov V.V., Maslov V.V., Nosenko V.K., Aronin A.S., Abrosimova G.E., Rybchenko O.G. Complex crystallization mode of amorphous/nanocrystalline composite Al86Ni2Co5.8Gd5.7Si0.5 // J. Non-Cryst. Solids. 2011. V. 357. № 7. P. 1628. https://doi.org/10.1016/j.jnoncrysol.2011.02.029
  13. Du S.Z., Li C.C., Pang S.Y., Leng J.F., Geng H.R. Influences of melt superheat treatment on glass forming ability and properties of Al84Ni10La6 alloy // Mater. Des. 2013. V. 47. P. 358–364. https://doi.org/10.1016/j.matdes.2012.12.002
  14. Abrosimova G., Volkov N., Pershina E., Tuan Т. V., Aronin A. Amorphous structure rejuvenation under cryogenic treatment of Al-based amorphous-nanocrystalline alloys // J. Non-Cryst. Solids. 2019. V. 528. P. 119751. https://doi.org/10.1016/j.jnoncrysol.2019.119751
  15. Aronin A., Abrosimova G. Specific Features of Structure Transformation and Properties of Amorphous-Nanocrystalline Alloys // Metals. 2020. V. 10. № 3. P. 358. https://doi.org/10.3390/met10030358
  16. Abrosimova G., Chirkova V., Pershina E., Volkov N., Sholin I., Aronin A. The effect of free volume on the crystallization of Al87Ni8Gd5 amorphous alloy // Metals. 2022. V. 12. № 2. P. 332. https://doi.org/10.3390/met12020332
  17. Абросимова Г.Е., Аронин А.С. Об образовании метастабильных фаз при кристаллизации аморфных сплавов на основе железа // Кристаллография. 2020. Т. 65. № 2. С. 450–454. https://doi.org/10.31857/S0023476120030030
  18. Saida J., Matsushita M., Zhang T., Inoue A., Chen M.W., Sakurai T. Precipitation of icosahedral phase from a supercooled liquid region in Zr65Cu7.5Al7.5 Ni10Ag10 metallic glass // Appl. Phys. Lett. 1999. V. 75. № 22. P. 3497–3499. https://doi.org/10.1063/1.125367
  19. Абросимова Г.Е., Аронин А.С., Матвеев Д.В., Молоканов В.В. Образование и структура нанокристаллов в массивном металлическом стекле Zr50Ti16Cu15Ni19 // ФТТ. 2004. Т. 46. № 12. С. 2119.
  20. Louzguine-Luzgin D.V., Bazlov A.I., Ketov S.V., Inoue A. Crystallization behavior of Fe- and Co-based bulk metallic glasses and their glass-forming ability // Mater. Chem. Phys. 2015. V. 162. P. 197. https://doi.org/10.1016/j.matchemphys.2015.05.058
  21. Abrosimova G., Aronin A. The increase of strength properties at nanocrystal formation // Mater. Lett. 2017. V. 206. P. 64. https://doi.org/10.1016/j.matlet.2017.06.098
  22. Battezzati L., Rizzi P., Rontó V. The difference in devitrification paths in Al87Ni7Sm6 and Al87Ni7La6 amorphous alloys // Mat. Sci. and Eng. А. 2002. V. 375–377. P. 927. https://doi.org/10.1016/j.msea.2003.10.042
  23. Huang Z.H., Li J.F., Rao Q.L., Zhou Y.H. Primary crystallization of Al–Ni–Re amorphous alloys with different type and content of re // Mat. Sci. and Eng. А 2008. V. 489. № 1–2. P. 380. https://doi.org/10.1016/j.msea.2007.12.027
  24. Mika T., Karolus M., Boichyshyn L., Haneczok G., Kotur B., Nosenko V. Crystallization of Al87Y5Ni8 amorphous alloys doped with Dy and Fe // Chem. Met. Alloys. 2012. V. 5. P. 50.
  25. Villars P. (Chief Editor) PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database), Springer, Heidelberg (ed.) Springer Materials. https://materials.springer.com/isp/crystallographic/docs/sd_1601445 15.05.2024
  26. Villars P. (Chief Editor) PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database), Springer, Heidelberg (ed.) Springer Materials. https://materials.springer.com/isp/crystallographic/docs/sd_0250405 15.05.2024
  27. Anghelus A., Avettand-Fenoel M.-N., Cordier C., Taillard R. Thermal crystallization of an Al88Ni6Sm6 metallic glass // J. Alloys Compd. 2015. V. 65. P. 454. http://dx.doi.org/10.1016/j.jallcom.2015.08.102
  28. Gu X.J., Jin H.J., Zhang H.W., Wang J.Q., Lu K. Pressure-enhanced thermal stability against eutectic crystallization in Al-based metallic glasses // Scripta Mater. 2001. V. 45. № 9. P. 1091–1097. https://doi.org/10.1016/S1359-6462(01)01145-9
  29. Li G.H., Wang W.M., Ma H.J., Li R., Zhang Z.H., Niu Y.C., Qu D.J. Effect of different annealing atmospheres on crystallization and corrosion resistance of Al86Ni9La5 amorphous alloy // Mat. Chem. and Phys. 2011. V. 125. P. 136. https://doi.org/10.1016/j.matchemphys.2010.08.084
  30. Rizzi P., Battezzati P. Mechanical properties of Al based amorphous and devitrified alloys containing different rare earth elements // J. Non-Cryst. Solids. 2004. V. 344. № 1–2. P. 94. https://doi.org/10.1016/j.jnoncrysol.2004.07.022
  31. Ronto V., Battezzati L., Yavari A.R., Tonegaru M., Lupu N., Heunen G. Crystallization behaviour of Al87Ni7La6 and Al87Ni7Sm6 amorphous alloys // Scripta Mater. 2004. V. 50. № 6. P. 839. https://doi.org/10.1016/j.scriptamat.2003.12.012
  32. Bazlov A.I., Tabachkova N.Yu., Zolotorevsky V.S., Louzguine-Luzgin D.V. Unusual crystallization of Al85Y8Ni5Co2 metallic glass observed in situ in TEM at different heating rates // Intermetallics 2018. V. 94. № 6. P. 192. https://doi.org/10.1016/j.intermet.2017.12.024
  33. Cuevas F.G., Lozano-Perez S., Aranda R.M., Caballero E.S. Crystallisation of amorphous Al–Sm–Ni–(Cu) alloys // Intermetallics. 2019. V. 112. P. 106537. https://doi.org/10.1016/j.intermet.2019.106537
  34. Cuevas F.G., Lozano-Perez S., Aranda R.M., Astacio R. Crystallization process and microstructural evolution of melt spun Al–RE–Ni–(Cu) ribbons // Metals. 2020. V. 10. № 4. P. 443. https://doi.org/10.3390/met10040443
  35. Aronin A., Matveev D., Pershina E., Tkatch V., Abrosimova G. The effect of changes in Al-based amorphous phase structure on structure forming upon crystallization // J. Alloys Compd. 2017. V. 715. P. 176–183. https://doi.org/10.1016/j.jallcom.2017.04.305
  36. Battezzati L., Pozzovivo S., Rizzi P. Phase Transformations in Al87Ni7Ce6 and Al87Ni7Nd6 Amorphous Alloys // Mat. Trans. 2002. V. 43. № 10. P. 2593. https://doi.org/10.2320/matertrans.43.2593
  37. Battezzati L., Kusy’ M., Rizzi P., Rontó V. Devitrification of Al-Ni-Rare earth amorphous alloys // J. Mat. Sci. 2004. V. 39. P. 3927. https://doi.org/10.1023/B:JMSС. 0000031473.19334.5b
  38. Villars P. (Chief Editor) PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database), Springer, Heidelberg (ed.). https://materials.springer.com/isp/crystallographic/docs/sd_1633312 15.05.2024
  39. Villars P. (Chief Editor) PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database), Springer, Heidelberg (ed.). https://materials.springer.com/isp/crystallographic/docs/sd_1011587 15.05.2024
  40. Villars P. (Chief Editor) PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database), Springer, Heidelberg (ed.). https://materials.springer.com/isp/crystallographic/docs/sd_1633311 15.05.2024

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML