Атомистическое моделирование пластической деформации в насыщенных водородом двухфазных бикристаллах Al/θ'

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом молекулярной динамики изучено влияние атомов водорода на деформационное поведение Al/\(\theta {\kern 1pt} '\) бикристаллов с (001)Al//(001)\(_{{\theta {\kern 1pt} '}}\) межфазной границей при сдвиге. При сдвиге в направлении [100]Al параллельном плоскости (001)Al первоначальное испускание дислокаций с межфазной границы приводит к развитию проскальзывания по границе с образованием разупорядоченного слоя атомов в алюминии. Критическое напряжение активации пластической релаксации в этом случае достигает 6.4 ГПа. При сдвиге [100](010)Al пластическая релаксация происходит за счет генерации и скольжения дислокаций в алюминии, а так же пластического течения в слое \(\theta {\kern 1pt} '\)-фазы, в этом случае пластическая релаксация активируется при сдвиговом напряжении 7.9 ГПа. Введение водорода в систему приводит к понижению критических напряжений в среднем на 34% вследствие значительного снижения стойкости материала \(\theta {\kern 1pt} '\)-фазы к сдвигу. Системы с водородом демонстрировали большую чувствительность к понижению скорости деформации, снижение скорости деформации в 20 раз сопровождается снижением критических напряжений на 20%, в то время как для бикристаллов без водорода аналогичное снижение составляет 5%. Повышение температуры приводит к снижению критических напряжений со средним коэффициентом температурной чувствительности −4 МПа/К.

Об авторах

П. А. Безбородова

Челябинский государственный университет

Email: ibragimova-polin@mail.ru
Россия, 454001, Челябинск, ул. Бр. Кашириных, 129

В. С. Красников

Челябинский государственный университет

Email: ibragimova-polin@mail.ru
Россия, 454001, Челябинск, ул. Бр. Кашириных, 129

А. Е. Майер

Челябинский государственный университет

Автор, ответственный за переписку.
Email: ibragimova-polin@mail.ru
Россия, 454001, Челябинск, ул. Бр. Кашириных, 129

Список литературы

  1. Johnson W.H. On some remarkable changes produced in iron and steel by the action of hydrogen and acids // Nature. 1875. V. 11. № 281. P. 393.
  2. Merrick R.D. An overview of hydrogen damage to steel at low temperature // Mater. Perform. 1989. V. 28. P. 53–55.
  3. Safyari M., Moshtaghi M., Kuramoto S. Environmental hydrogen embrittlement associated with decohesion and void formation at soluble coarse particles in a cold-rolled Al–Cu based alloy // Mater. Sci. Eng. A. 2021. V. 799. P. 139850.
  4. Su H., Toda H., Shimizu K., Uesugi K., Takeuchi A., Watanabe Y. Assessment of hydrogen embrittlement via imagebased techniques in Al–Zn–Mg–Cu aluminum alloys // Acta Mater. 2019. V. 176. P. 96–108.
  5. Tsuru T., Shimizu K., Yamaguchi M., Itakura M., Ebihara K., Bendo A., Matsuda K., Toda H. Hydrogen-accelerated spontaneous microcracking in high-strength aluminium alloys // Sci. Rep. 2020. V. 10. P. 1998.
  6. Карькина Л.Е., Карькин И.Н., Горностырев Ю.Н. Зернограничное проскальзывание по специальным асимметричным границам зерен в бикристаллах Al. Атомистическое молекулярно-динамическое моделирование // Физика металлов в металловедение. 2021. Т. 122. № 11. С. 1187–1195.
  7. Hua A., Zhao J. Shear direction induced transition mechanism from grain boundary migration to sliding in a cylindrical copper bicrystal // Int. J. Plast. 2022. V. 156. P. 103370.
  8. Yao B.N., Liu Z.R., Legut D., Kong X.F., Germann T.C., Zhang H.J., Zhang R.F. Cooperative roles of stacking fault energies on dislocation nucleation at bimetal interface through tunable potentials // Comput. Mater. Sci. 2021. V. 193. P. 110416.
  9. Волков А.Ю., Калонов А.А., Завалишин В.А., Глухов А.В., Комкова Д.А., Антонов Б.Д. Влияние интерфейсов на физико-механические свойства Cu/Mg-композитов // Физика металлов в металловедение. 2020. Т. 121. № 6. С. 628–634.
  10. Shayanpoor A.A., Rezaei Ashtiani H.R. Microstructural and mechanical investigations of powder reinforced interface layer of hot extruded Al/Cu bimetallic composite rods // J. Manuf. Process. 2022. V. 77. P. 313–328.
  11. Kim I.K., Hong S. Effect of heat treatment on the bending behavior of tri-layered Cu/Al/Cu composite plates // Mater. Des. 2013. V. 47. P. 590–598.
  12. Han J., Li S., Gao X., Huang Z., Wang T., Huang Q. Effect of annealing process on interface microstructure and mechanical property of the Cu/Al corrugated clad sheet // J. Mater. Res. Technol. 2023. V. 23. P. 284–299.
  13. Sas-Boca I.M., Iluțiu-Varvara D.A., Tintelecan M., Aciu C., Frunzӑ D.I., Popa F. Studies on Hot-Rolling Bonding of the Al–Cu Bimetallic Composite // Materials. 2022. V. 15. № 24. P. 8807.
  14. Krasnikov V.S., Mayer A.E. Initiation and Mechanisms of Plasticity in Bimetallic Al–Cu Composite // Metals. 2023. V. 13. № 1. P. 102.
  15. Zhang J., Ma A., Wang J., Liu C., Xie J., Jia Y. Grain boundary heredity from Cu/Al solid–liquid interface via diffusion during the solidification processes // Chem. Phys. 2022. V. 552. P. 111369.
  16. Bourgeois L., Dwyer C., Weyland M., Nie J.-F., Muddle B.C. Structure and energetics of the coherent interface between the
  17. Gazizov M.R., Boev A.O., Marioara C.D., Andersen S.J., Holmestad R., Kaibyshev R.O., Aksyonov D.A., Krasnikov V.S. The unique hybrid precipitate in a peak-aged Al–Cu–Mg–Ag alloy // Scr. Mater. 2021. V. 194. P. 113669.
  18. Шуркин П.К., Акопян Т.К., Летягин Н.В. Влияние микродобавки индия на структуру и упрочнение бинарных Al–Cu-сплавов // Физика металлов в металловедение. 2021. Т. 122. № 8. С. 866–872.
  19. Ma Z., Zhan L., Liu C., Xu L., Xu Y., Ma P., Li J. Stress-level-dependency and bimodal precipitation behaviors during creep ageing of Al–Cu alloy: Experiments and modeling // Int. J. Plast. 2018. V. 110. P. 183–201.
  20. Krasnikov V.S., Mayer A.E. Dislocation dynamics in aluminum containing
  21. Krasnikov V.S., Mayer A.E., Pogorelko V.V., Gazizov M.R. Influence of
  22. Krasnikov V.S., Gazizov M.R., Mayer A.E., Bezborodova P.A., Pogorelko V.V., Kaibyshev R.O. Prediction of the strength of aged Al–Cu alloys with non-hybrid and hybrid {100} Al plates // Comput. Mater. Sci. 2022. V. 207. P. 111331.
  23. Adlakha I., Garg P., Solanki K.N. Revealing the atomistic nature of dislocation-precipitate interactions in Al–Cu alloys // J. Alloys Compd. 2019. V. 797. P. 325–333.
  24. Zhang P., Bian J.J., Zhang J.Y., Liu G., Weiss J., Sun J. Plate-like precipitate effects on plasticity of Al–Cu alloys at micrometer to sub-micrometer scales // Mater. Des. 2020. V. 188. P. 108444.
  25. Liu G., Wang S., Misra A., Wang J. Interface-mediated plasticity of nanoscale Al–Al2Cu eutectics // Acta Mater. 2020. V. 186. P. 443–453.
  26. Krasnikov V.S., Bezborodova P.A., Mayer A.E. Effect of hydrogen accumulation on θ' precipitates on the shear strength of Al–Cu alloys // Int. J. Plast. 2022. V. 159. P. 103475.
  27. Krasnikov V.S., Mayer A.E., Pogorelko V.V. Prediction of the shear strength of aluminum with θ phase inclusions based on precipitate statistics, dislocation and molecular dynamics // Int. J. Plast. 2020. V. 128. P. 102672.
  28. Krasnikov V.S., Mayer A.E., Pogorelko V.V., Gazizov M.R. Influence of
  29. Kanel G.I., Zaretsky E.B., Razorenov S.V., Ashitkov S.I., Fortov V.E. Unusual plasticity and strength of metals at ultra-short load durations // Phys. Usp. 2017. V. 60. P. 490–508.
  30. Zuanetti B., McGrane S.D., Bolme C.A., Prakash V. Measurement of elastic precursor decay in pre-heated aluminum films under ultra-fast laser generated shocks // J. Appl. Phys. 2018. V. 123. № 19. P. 195104.
  31. Majchrzak E., Poteralska J. Numerical-analysis-of-short-pulse-laser-interactions-with-thin-metal-film // Archives of foundry eng. 2010. V. 10. P. 123–128.
  32. Путилин В.А., Камашев А.В. Формирование упрочненного слоя в хромистых сталях при обработке короткоимпульсным лазерным излучением // Известия Самарского научного центра Российской академии наук. 2018. Т. 20. № 4–2. С. 290–292.
  33. Ромашевский С.А., Ашитков С.И., Агранат М.Б. Фемтосекундная лазерная технология обработки твердотельных материалов: создание функциональных поверхностей и селективная модификация наноразмерных слоев // Теплофизика высоких температур. 2018. Т. 56. № 4. С. 609–630.
  34. Kumar P., Garg P., Solanki K.N., Adlakha I. Effect of hydrogen on the ideal shear strength in metals and its implications on plasticity: A first-principles study // Int. J. Hydrog. Energy. 2021. V. 46. № 50. P. 25726–25737.
  35. Plimpton S. Fast parallel algorithms for short-range molecular dynamics // J. Comput. Phys. 1995. V. 117. P. 1–19.
  36. Zhou X.W., Ward D.K., Foster M.E. A bond-order potential for the Al–Cu–H ternary system // New J. Chem. 2018. V. 42. P. 5215–5228.
  37. Meng X., Leng X., Shan C., Zhou L., Zhou J., Huang S., Lu J. Vibration fatigue performance improvement in 2024-T351 aluminum alloy by ultrasonic-assisted laser shock peening // Int. J. Fatigue. 2023. V. 168. P. 107471.
  38. Nakamura M., Takahashi K., Saito Y. Effect of Shot and Laser Peening on Fatigue Strength of Additively Manufactured Aluminum Alloy with Rough Surfaces // J. Mater. Eng. Perform. 2023. V. 32. № 4. P. 1589–1600.
  39. Li B., Qin Z., Zhang H., Xue H. The effects of laser peening treatment on the very high cycle fatigue properties for AA2024-T351 alloy using a crystal plasticity framework // Eng. Fract. Mech. 2022. V. 275. P. 108840.
  40. Hirel P. Atomsk: a tool for manipulating and converting atomic data files // Comput. Phys. Commun. 2015. V. 197. P. 212–219.
  41. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool // Model. Simul. Mater. Sci. Eng. 2009. V. 18. № 1. P. 015012.
  42. Stukowski A., Bulatov V.V., Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces // Model. Simulat. Mater. Sci. Eng. 2012. V. 20. P. 085007.
  43. Kelchner C.L., Plimpton S.J., Hamilton J.C. Dislocation nucleation and defect structure during surface indentation // Phys. Rev. B. 2012. V. 58. P. 11085.
  44. Kuzmin V.A., Galiev F.F., Pushkov V.A., Sherstobitov E.S., Koshatova E.V., Gerasimov S.I., Mishustin A.T. A Study of the Deformation of a Low-Density Aluminum–Lithium Alloy under Impact Compression and Localized Shear // Physics of Metals and Metallography. 2022. V. 123. № 10. P. 1017–1023.