Spectral and photochemical properties of dipyrenylcyclobutanes formed in the [2+2]-photocycloaddition reaction from biphotochromic dyads

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The properties of dipyrenylcyclobutanes CB10 and CBoX, which are products of the [2+2]-photocycloaddition reaction (PCA) of the corresponding biphotochromic dyads D10 and DoX, have been studied. The absorption and fluorescence spectra of cyclobutane CBoX revealed the presence of different types of pyrene substituents, with strong and weak interactions in the ground S0 and excited S1 states. In both cyclobutanes, energy transfer (ET) from the pyrenyl substituents to the cyclobutane rings is observed, initiating the cyclobutane opening reaction (retro-PCA), which occurs via a predissociation mechanism. The photochromic pair “D10-CB10 is an example of a new type of photochrome operating by the mechanism of the PCA reaction and can function as a two-channel color-correlated fluorescent photoswitch.

Texto integral

Acesso é fechado

Sobre autores

M. Budyka

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS

Autor responsável pela correspondência
Email: budyka@icp.ac.ru
Rússia, Chernogolovka

V. Li

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS

Email: budyka@icp.ac.ru
Rússia, Chernogolovka

T. Gavrishova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS

Email: budyka@icp.ac.ru
Rússia, Chernogolovka

Bibliografia

  1. Kirkus M., Janssen R.A.J., Meskers S.C.J. // J. Phys. Chem. A. 2013. V. 17. P. 4828.
  2. Margulies E.A., Shoer L.E., Eaton S.W., Wasielewski M.R. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 23735.
  3. Long S., Wang Y., Vdovic S., Zhou M., Yan L., Niu Y. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 18567.
  4. Cho D.W., Fujitsuka M., Sugimoto A., Majima T. // J. Phys. Chem. A. 2008. V. 112. P. 7208.
  5. Wang S., Bohnsack M., Megow S., Renth F., Temps F. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 2080.
  6. Kucukoz B., Adinarayana B., Osuka A., Albinsson B. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 16477.
  7. Letrun R., Lang B., Yushchenko O., Wilcken R., Svechkarev D., Kolodieznyi D. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 30219.
  8. Chahal M.K., Liyanage A., Gobeze H.B., Payne D.T., Ariga K., Hill J.P., D’Souza F. // Chem. Commun. 2020. V. 56. P. 3855.
  9. Liang C.K., Desvergne J.P., Bassani D.M. // Photochem. Photobiol. Sci. 2014. V. 13. P. 316.
  10. Perrier A., Maurel F., Jacquemin D. // Acc. Chem. Res. 2012. V. 45. P. 1173.
  11. Doddi S., Ramakrishna B., Venkatesha Y., Bangl P.R. // RSC Adv. 2015. V. 5. P. 56855.
  12. Kim D., Park S.Y. // Optical Mater. 2018. P. 1800678.
  13. Szacilowski K. // Chem. Rev. 2008. V. 108. P. 3481.
  14. Будыка М.Ф. // Успехи химии. 2017. Т. 86. С. 181.
  15. Andreasson J., Pischel U. // Coord. Chem. Rev. 2021. V. 429. P. 213695.
  16. Будыка М.Ф., Поташова Н.И., Гавришова Т.Н., Ли В.М., Гак В.Ю., Гринева И.А. // Химия высоких энергий. 2018. Т. 52. С. 204.
  17. Будыка М.Ф., Ли В.М., Гавришова Т.Н. // Химия высоких энергий. 2024. Т. 58, С. 77.
  18. Budyka M.F., Fedulova J.A., Gavrishova T.N., Li V.M., Potashova N.I., Tovstun S.A. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 24137
  19. Bera S., Bera A., Banerjee D. // Org. Lett. 2020. V. 22. P. 6458.
  20. Sahu K.B., Ghosh S., Banerjee M., Maity A., Mondal S., Paira R. et al. // Med. Chem. Res. 2013. V. 22. P. 94.
  21. Будыка М.Ф., Гавришова Т.Н., Ли В.М., Дозморов С.А. // Изв. АН. Сер.хим. 2023. Т. 72. С. 2013.
  22. Winnik F.M. // Chem. Rev. 1993. V. 93. P. 587.
  23. Siu H., Duhamel J. // J. Phys. Chem. B. 2008. V. 112. P. 15301.
  24. Seixas de Melo J., Costa T., Francisco A., Macanita A.L., Gago S., Goncalves I.S. // Phys. Chem. Chem. Phys. 2007. V. 9. P. 1370.
  25. Dong D.C., Winnik M.A. // Photochem. Photobiol. 1982. V. 35. P. 17.
  26. Seixas de Melo J., Costa T., Miguel M.G., Lindman B., Schillen K. // J. Phys. Chem. B. 2003. V. 107. P. 12605.
  27. Pomerantsev A.L., Chemometrics in Excel. Hoboken, John Wiley & Sons Inc., 2014.
  28. Fischer E. // J. Phys. Chem. 1967. V. 71. P. 3704.
  29. Perrier A., Maurel F., Jacquemin D. // Acc. Chem. Res. 2012. V. 45. P. 1173.
  30. Budyka M.F., Gavrishova T.N., Li V.M., Tovstun S.A. // Spectr. Acta Part A. 2024. V. 320. P. 124666.
  31. Braslavsky S.E., Fron E., Rodriguez H.B., Roman E.S., Scholes G.D., Schweitzer G. et al. // Photochem. Photobiol. Sci. 2008. V. 7. P. 1444.
  32. Chung J.W., You Y., Huh H.S., An B.K., Yoon S.J., Kim S.H. et al. // J. Am. Chem. Soc. 2009. V.131. P. 8163.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Absorption spectra in methylene chloride: 1 – cyclobutane CB10, 2 – 1-methylpyrene MP (shifted bathochromically by 7 nm); normalized (by the maximum of the absorption spectra) fluorescence spectra: 3 – cyclobutane CB10 (excitation at 352 nm), 4 – methylpyrene MP (shifted bathochromically by 2 nm, excitation at 328 nm); 5 – normalized fluorescence excitation spectrum of cyclobutane CB10 (observation at 380 nm).

Baixar (225KB)
3. Fig. 2. Spectra of cyclobutane CBoX in methylene chloride: 1 – absorption; normalized spectra: 2 – fluorescence (excitation at 351 nm), 3 – fluorescence excitation (observation at 379 nm).

Baixar (177KB)
4. Fig. 3. Spectral changes upon irradiation of an air-saturated solution of cyclobutane CB10 (1.67 × 10–5 M) with light of wavelength 316 nm, intensity 1.07 × 10–10 einstein cm–2 • s–1, photolysis time 0 (1) – 10,000 s (9).

Baixar (182KB)
5. Fig. 4. Plot of scores – processing by the principal component analysis method of spectral changes occurring during photolysis of the D10 dyad by light with a wavelength of 408 nm (1) and 316 nm (3) and cyclobutane CB10 by light with a wavelength of 316 nm (2); the spectra are presented in a common basis of the first two singular vectors p1 and p2. The points corresponding to the experimental spectra of the EE isomer of the D10 dyad, cyclobutane CB10 (CB), PS316 PS and quasi-PS408 PS, as well as the model spectrum of the ZE isomer of the dyad are marked (see text); the arrows show the direction of spectral changes during photolysis.

Baixar (163KB)
6. Fig. 5. The influence of the energy transfer efficiency ETd in the ZE and ZE isomers of the D10 dyad on the approximation error DA (left axis, 1) and the values ​​of the quantum yields of reactions (right axis) tc (2), ct (3), PCA (4) RO (5); the range of values ​​A < 0.001 is highlighted.

Baixar (200KB)
7. Fig. 6. Fluorescence spectra (excitation at 352 nm): cyclobutane CB10 (1), the same sample after irradiation with light of wavelength 316 nm for 3000 s (2); fluorescence excitation spectra: cyclobutane CB10 (3, observation at 380 nm), after irradiation with light of wavelength 316 nm for 3000 s (4, observation at 465 nm, spectrum reduced by a factor of 2). Insert: change in fluorescence intensity of the sample (excitation at 352 nm) at wavelengths: 380 nm (5) and 465 nm (6) upon alternate irradiation with light of wavelengths 316 nm for 3000 s and 442 nm for 500 s.

Baixar (262KB)
8. Scheme 1. Structure of D10 and DoX dyads containing 2-[2-(pyren-1-yl)ethenyl]-quinoline (PEQ) as photochromic groups and different bridging groups, and a photoisomerization reaction cycle involving PEQ photochromes and the formation of different dyad isomers.

Baixar (123KB)
9. Scheme 2. [2+2]-photocycloaddition reactions in EE isomers of dyads D10 and DoX (in the head-to-head conformation) with the formation of tetrasubstituted cyclobutanes CB10 and CBoX.

Baixar (160KB)
10. Scheme 3. Structures of model PEQ photochromes, (E)-8-acetoxy-2-[(2-(pyren-1-yl)ethenyl]-quinoline (APEQ) and (E)-8-octyloxy-2-[(2-(pyren-1-yl)ethenyl]-quinoline (M1), s-trans conformers are shown.

Baixar (81KB)
11. Scheme 4. Possible arrangement of two PEQ photochromes before the [2+2]-photocycloaddition reaction, leading to the formation of the corresponding isomers of tetrasubstituted cyclobutane.

Baixar (130KB)
12. Scheme 5. Possible conformers of the rctt isomer of cyclobutane with axial and equatorial positions of substituents.

Baixar (29KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025