Toxicity Study of Pharmacological Pair Encapsulated Citrobacter freundii C115H Methionine γ-Lyase / Methiin

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The acute and subchronic toxicity of the pharmacological pair based on encapsulated Citrobacter freundii C115H methionine γ-lyase enzyme/prodrug (methiin) was studied in female ICR mice. The drug showed a weak/moderate dose-dependent hepatotoxic effect. Most of the identified changes in liver morphology were insignificant or mild deviations from the norm. Long-term use of a single therapeutic dose per mouse of 1.5 U C. freundii C115H methionine γ-lyase @ (PEG−P(Asp)70/PLL70)-PICsome / 2 mg methiin led to a slight decrease in the weight of animals without obvious signs of intoxication. A quarter of the animals in this group had no deviations from the norm in liver morphology. No nephrotoxic effect in all study groups was found.

Толық мәтін

Рұқсат жабық

Авторлар туралы

S. Revtovich

Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: svetla21@mail.ru
Ресей, Moscow, 119991

V. Kulikova

Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences

Email: svetla21@mail.ru
Ресей, Moscow, 119991

V. Koval

Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences

Email: svetla21@mail.ru
Ресей, Moscow, 119991

A. Lyfenko

Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences

Email: svetla21@mail.ru
Ресей, Moscow, 119991

V. Kazakov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: svetla21@mail.ru
Ресей, Pushchino, Moscow Region, 142290

A. Chernov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: svetla21@mail.ru
Ресей, Pushchino, Moscow Region, 142290

G. Telegin

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: svetla21@mail.ru
Ресей, Pushchino, Moscow Region, 142290

A. Zemskaya

Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences

Email: svetla21@mail.ru
Ресей, Moscow, 119991

N. Anufrieva

Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences

Email: svetla21@mail.ru
Ресей, Moscow, 119991

E. Morozova

Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences

Email: svetla21@mail.ru
Ресей, Moscow, 119991

P. Solyev

Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences

Email: svetla21@mail.ru
Ресей, Moscow, 119991

Әдебиет тізімі

  1. Morozova E., Kulikova V., Rodionov A., Revtovich S., Anufrieva N., Demidkina T. (2016) Engineered Citrobacter freundii methionine γ-lyase effectively produces antimicrobial thiosulfinates. Biochimie. 128‒129, 92–98.
  2. Iciek M., Kwiecień I., Włodek L. (2009) Biological properties of garlic and garlic-derived organosulfur compounds. Environ. Mol. Mutagenesis. 50, 247–265.
  3. Jacob C. (2006) A scent of therapy: pharmacological implications of natural products containing redox-active sulfur atoms. Nat. Prod. Rep. 23, 851–863.
  4. Kim S., Kubec R., Musah R. A. (2006) Antibacterial and antifungal activity of sulfur-containing compounds from Petiveria alliacea L. J. Ethnopharmacol. 104, 188–192.
  5. Kulikova V.V., Anufrieva N.V., Revtovich S V., Chernov A.S., Telegin G.B., Morozova E. A., Demidkina T.V. (2016) Mutant form C115H of Clostridium sporogenes methionine γ-lyase efficiently cleaves S-alk(en)yl-L-cysteine sulfoxides to antibacterial thiosulfinates. IUBMB Life. 68, 830–835.
  6. Leontiev R., Hohaus N., Jacob C., Gruhlke M.C.H., Slusarenko A.J. (2018) A comparison of the antibacterial and antifungal activities of thiosulfinate analogues of allicin. Sci. Rep. 8, 6763.
  7. Revtovich S., Lyfenko A., Tkachev Y., Kulikova V., Koval V., Puchkov V., Anufrieva N., Solyev P., Morozova E. (2023) Anticandidal activity of in situ methionine γ-lyase-based thiosulfinate generation system vs. synthetic thiosulfinates. Pharmaceuticals (Basel). 16(12), 1695.
  8. Small L.D., Bailey J.H., Cavallito C.J. (1947) Alkyl thiolsulfinates. J. Am. Chem. Soc. 69, 1710–1717.
  9. Куликова В.В., Чернуха М.Ю., Морозова Е.А., Ревтович С.В., Родионов А.Н., Коваль В.С., Аветисян Л.Р., Кулястова Д.Г., Шагинян И.А., Демидкина Т.В. (2018) Антибактериальное действие тиосульфинатов на мультирезистентные штаммы бактерий, выделенные от больных муковисцидозом. Acta Naturae. 10, 83–87.
  10. Anraku Y., Kishimura A., Kamiya M., Tanaka S., Nomoto T., Toh K., Matsumoto Y., Fukushima S., Sueyoshi D., Kano M.R., Urano Y., Nishiyama N., Kataoka K. (2016) Systemically injectable enzyme-loaded polyion complex vesicles as in vivo nanoreactors functioning in tumors. Angew. Chem. Int. Ed. Engl. 55, 560‒565.
  11. Kulikova V.V., Morozova E.A., Anufrieva N.V., Koval V.S., Lyfenko A.D., Lesnova E.I., Kushch A.A., Revtovich S.V., Demidkina T.V. (2022) Kinetic and pharmacokinetic characteristics of therapeutic methinoninе γ-lyase encapsulated in polyion complex vesicles. Biochemie. 194, 13–18.
  12. Morozova E., Kulikova V., Koval V., Anufrieva N., Chernukha M., Avetisyan L., Lebedeva L., Medvedeva O., Burmistrov E., Shaginyan I., Revtovich S., Demidkina T. (2020) Encapsulated methionine γ-lyase: application in enzyme prodrug therapy of Pseudomonas aeruginosa infection. ACS Omega. 5, 7782–7786.
  13. Morozova E., Koval V., Revtovich S., Lyfenko A., Minakov A., Chernov A., Telegin G., Kirilenko D., Chobanian A., Anufrieva N., Kulikova V., Demidkina T. (2023) Phytoestrogens decorated nanocapsules for therapeutic methionine γ-lyase targeted delivery. Biochimie. 209, 1–9.
  14. Миронов А.Н. (2012) Руководство по проведению доклинических исследований лекарственных средств. Часть первая. М.: Гриф и К.
  15. Miron T., Rabinkov A., Mirelman D., Weiner L., Wilchek M. (1998) A spectrophotometric assay for allicin and alliinase (alliin lyase) activity: reaction of 2-nitro-5-thiobenzoate with thiosulfinates. Anal. Biochem. 265, 317–325.
  16. Koval V., Morozova E., Revtovich S., Lyfenko A., Chobanian A., Timofeeva V., Solovieva A., Anufrieva N., Kulikova V., Demidkina T. (2022) Characteristics and stability assessment of therapeutic methionine γ-lyase-loaded polyionic vesicles. ACS Omega. 7, 959–967.
  17. Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685.
  18. Морозова Е.А., Бажулина Н.П., Ануфриева Н.В., Мамаева Д.В., Ткачев Я.В., Стрельцов С.А., Тимофеев В.П., Фалеев Н.Г., Демидкина Т.В. (2010) Кинетические и спектральные параметры взаимодействия Citrobacter freundii метионин–γ-лиазы с аминокислотами. Биохимия. 75, 1435–1445.
  19. Organization for Economic Cooperation and Development (OECD) (2008) Guidelines for the Testing of Chemicals and Food Ingredients. Section 4 (Part 407). Paris, France.
  20. Mennecozzi M., Landesmann B., Palosaari T., Harris G., Whelan M. (2015) Sex differences in liver toxicity – do female and male human primary hepatocytes react differently to toxicants in vitro? PLoS One. 10(4), e0122786.
  21. American Veterinary Medical Association (2020) AVMA Guidelines for the Euthanasia of Animals. Schaumburg (IL), USA. ISBN978–1–882691–09–8
  22. Mann P.C., Vahle J., Keenan C.M., Baker J.F., Bradley A.E., Goodman D.G., Harada T., Herbert R., Kaufmann W., Kellner R., Nolte T., Rittinghausen S., Tanaka T. (2012) International harmonization of toxicologic pathology: nomenclature: an overview and review of basic principles. Toxicol. Pathol. 40, 7S–13S.
  23. Kyung K.H., Fleming H.P. (1994) S-Methyl-L-cysteine sulfoxide as the precursor of methyl methanethiolsulfinate, the principal antibacterial compound in сabbage. J. Food Sci. 59, 350–355.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Appendix
Жүктеу (279KB)
3. Fig. 1. Principle of action of the pharmacological pair encapsulated MGL/methionine.

Жүктеу (709KB)
4. Fig. 2. Liver fragments of female mice of the control group. Haematoxylin and eosin staining. The arrows indicate: a - small foci of mononuclear infiltration in the parenchyma of one of the lobes of the organ (mouse 5.1); b - hypertrophy of individual hepatocytes (mouse 5.2).

Жүктеу (942KB)
5. Fig. 3. Liver fragments of female mice on day 7 after a single injection of 1.5 U C115H-PIC-som MGL/2 mg methiin. Haematoxylin and eosin staining. The arrows indicate: a - small foci of mononuclear infiltration in the parenchyma of one of the organ lobes (mouse 1.2); b - hepatocyte karyomegaly (mouse 1.3).

Жүктеу (885KB)
6. Fig. 4. Fragments of the liver of female mice on day 7 after a single administration of 1.5 units of C115H-PIC-com MGL / 10 mg of methiine. Staining with hematoxylin and eosin. The arrows indicate: a – small foci of infiltration by segmented leukocytes (mouse 2.1), b – foci of mononuclear infiltration with single segmented leukocytes and phagocytosis of dead hepatocytes (mouse 2.6).

Жүктеу (855KB)
7. Fig. 5. Fragments of the liver of female mice on day 7 after a single administration of 1.5 units of C115H-PIC-com MG/20 mg of methiine. Staining with hematoxylin and eosin. The arrows indicate: a – the focus of hepatocytes with initial necrosis (mouse 3.4), b – hepatocytes with pigmented inclusions in the cytoplasm (mouse 3.5).

Жүктеу (737KB)
8. Fig. 6. Fragments of the cortical (a) and cerebral (b) substances of the kidney of a female mouse of the control group (mouse 5.1). The usual histological structure of the organ. Staining with hematoxylin and eosin.

Жүктеу (1MB)
9. Fig. 7. Fragments of the renal cortex of female mice on day 7 after a single administration of 1.5 units of C115H-PIC-com MG/2 mg of methiine. Staining with hematoxylin and eosin. The arrows indicate: a – the phenomena of chronic progressive nephropathy (mouse 1.5), b – a tubular cyst (solid arrow) lined with flattened epithelium (dotted arrows; mouse 1.3).

Жүктеу (987KB)
10. Fig. 8. Fragments of the renal cortex of a mouse (3.5 mouse) on day 7 after a single administration of 1.5 units of C115H-PIC-com MG/20 mg of methiine. Staining with hematoxylin and eosin. The arrows indicate the phenomena of chronic progressive nephropathy (a) and perivascular focus of mononuclear infiltration (b).

Жүктеу (1MB)
11. Fig. 9. Fragments of the liver of female mice of the control group. Staining with hematoxylin and eosin. a – The arrows indicate the focus of mononuclear infiltration with segmented leukocytes (mouse 5.4). b – The usual histological structure of the organ (mouse 5.3).

Жүктеу (1008KB)
12. Fig. 10. Fragments of the liver of female mice on day 15 after 7-fold administration of 1.5 units of C115H-PIC-com MG/2 mg of methiine. Staining with hematoxylin and eosin. The arrows indicate: a – a focus of hepatocytes with initial necrosis (mouse 4.1); b – hepatocytes with pigmented inclusions in the cytoplasm (mouse 4.3); c – small foci of extramedullary hematopoiesis (mouse 4.6); d – the usual histological structure of the organ (mouse 4.7).

Жүктеу (2MB)
13. Fig. 11. Fragments of the cortical (a) and cerebral (b) substances of the mouse kidney on day 15 after 7-fold administration of 1.5 units of C115H-PIC-com MG/2 mg of methiine (mouse 4.4). The usual histological structure of the organ. Staining with hematoxylin and eosin.

Жүктеу (1MB)

© Russian Academy of Sciences, 2024