Разработка высокоспецифичных и эффективных вариантов эндонуклеазы SpCas9 на основе HH-теории
- Авторы: Wang G.H.1, Wang C.M.2,3, Wu X.J.4, Chu T.5, Huang D.W.6, Li J.7
-
Учреждения:
- Guangdong Industry Polytechnic
- Nanfang Hospital, Southern Medical University
- Southern University of Science and Technology Hospital (SUS Tech Hospital)
- The University of North Carolina at Chapel Hill
- Sangon Biotech (Shanghai) Co., Ltd.
- Jinhua Polytechnic
- Southern Medical University
- Выпуск: Том 58, № 1 (2024)
- Страницы: 157-159
- Раздел: МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ
- URL: https://innoscience.ru/0026-8984/article/view/655351
- DOI: https://doi.org/10.31857/S0026898424010158
- EDN: https://elibrary.ru/NTCLJI
- ID: 655351
Цитировать
Аннотация
Эндонуклеаза Cas9 Streptococcus pyogenes (SpCas9) ‒ самый популярный инструмент редактирования генов, но нецелевой мутагенез, сопровождающий ее действие, представляет серьезное ограничение. Ранее нами предложена HH-теория, в которой утверждается, что индуцированное экструзией гибрида sgRNA/DNA (hibrid) усиление гидрофобных взаимодействий (hydrophobic interaction) между гибридом и REC3/HNH является ключевым фактором инициации расщепления. Теперь на основе HH-теории проанализировано взаимодействие домена REC3 с гибридом и получено 8 мутантных сайтов. Мы сконструировали 8 вариантов SpCas9 (V1‒V8), использовали цифровую капельную ПЦР для оценки SpCas9-индуцированных инделей ДНК в клетках человека и разработали высокоточные варианты эндонуклеазы. Таким образом, HH-теория может быть использована для дальнейшей оптимизации систем редактирования генома, опосредованных SpCas9, а полученные варианты V3, V6, V7 и V8 SpCas9 можно рассматривать как перспективный инструмент для приложений, требующих высокоточного редактирования генома.
Ключевые слова
Об авторах
G. H. Wang
Guangdong Industry Polytechnic
Email: lijuan860103@163.com
School of Food and Biotechnology
Китай, Guangzhou, 510300C. M. Wang
Nanfang Hospital, Southern Medical University; Southern University of Science and Technology Hospital (SUS Tech Hospital)
Email: lijuan860103@163.com
Department of Pharmacy
Китай, Guangzhou, 510515; Shenzhen, 518000X. J. Wu
The University of North Carolina at Chapel Hill
Email: lijuan860103@163.com
Lineberger Comprehensive Cancer Center
США, Chapel Hill, North Carolina, 27517T. Chu
Sangon Biotech (Shanghai) Co., Ltd.
Email: lijuan860103@163.com
Китай, Shanghai
D. W. Huang
Jinhua Polytechnic
Email: lijuan860103@163.com
Pharmaceutical and Material Engineering School
Китай, Jinhua, 321007J. Li
Southern Medical University
Автор, ответственный за переписку.
Email: lijuan860103@163.com
Department of Histology and Embryology, School of Basic Medical Sciences
Китай, Guangzhou, 510515Список литературы
- Komor A.C., Badran A.H., Liu D.R. (2017) CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell. 169, 559.
- Doudna J.A. (2020) The promise and challenge of therapeutic genome editing. Nature. 578, 229‒236.
- Zhu X., Clarke R., Puppala A.K., Chittori S., Merk A., Merrill B.J., Simonovic M., Subramaniam S. (2019) Cryo-EM structures reveal coordinated domain motions that govern DNA cleavage by Cas9. Nat. Struct. Mol. Biol. 26, 679‒685.
- Wang G., Li J. (2021) Review, analysis, and optimization of the CRISPR Streptococcus pyogenes Cas9 system. Med. Drug Discov. 9, 100080. doi: 10.1016/j.medidd.(2021)100080
- Mozo-Villarías A., Querol E. (2019) A protein self-assembly model guided by electrostatic and hydrophobic dipole moments. PLoS One. 14, e0216253.
- Shashikala H.B.M., Chakravorty A., Alexov E. (2019) Modeling electrostatic force in protein-protein recognition. Front. Mol. Biosci. 6, 94.
- Grdadolnik J., Merzel F., Avbelj F. (2017) Origin of hydrophobicity and enhanced water hydrogen bond strength near purely hydrophobic solutes. Proc. Natl. Acad. Sci. USA. 114, 322‒327.
- Galamba N. (2013) Water’s structure around hydrophobic solutes and the iceberg model. J. Phys. Chem. B. 117, 2153‒2159.
- Kinoshita M. (2009) Importance of translational entropy of water in biological self-assembly processes like protein folding. Int. J. Mol. Sci. 10, 1064‒1080.
- Harano Y., Kinoshita M. (2004) Large gain in translational entropy of water is a major driving force in protein folding. Chem. Phys. Lett. 399, 342‒348. doi: 10.1016/j.cplett.2004.09.140
- Harano Y., Kinoshita M. (2005) Translational-entropy gain of solvent upon protein folding. Biophys. J. 89, 2701‒2710.
- Feng B., Sosa R.P., Martensson A.K.F., Jiang K., Tong A., Dorfman K.D., Takahashi M., Lincoln P., Bustamante C.J., Westerlund F., Norden B. (2019) Hydrophobic catalysis and a potential biological role of DNA unstacking induced by environment effects. Proc. Natl. Acad. Sci. USA. 116, 17169‒17174.
- Yakovchuk P., Protozanova E., Frank-Kamenetskii M.D. (2006) Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 34, 564‒574.
- Vologodskii A., Frank-Kamenetskii M.D. (2018) DNA melting and energetics of the double helix. Phys. Life Rev. 25, 1‒21.
- Chen J.S., Dagdas Y.S., Kleinstiver B.P., Welch M.M., Sousa A.A., Harrington L.B., Sternberg S.H., Joung J.K., Yildiz A., Doudna J.A. (2017) Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature. 550, 407‒410.
- Kleinstiver B.P., Pattanayak V., Prew M.S., Tsai S.Q., Nguyen N.T., Zheng Z., Joung J.K. (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 529, 490‒495.
- Fu Y., Sander J.D., Reyon D., Cascio V.M., Joung J.K. (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279‒284.
- Slaymaker I.M., Gao L., Zetsche B., Scott D.A., Yan W.X., Zhang F. (2016) Rationally engineered Cas9 nucleases with improved specificity. Science. 351, 84‒88.
- Guo M., Ren K., Zhu Y., Tang Z., Wang Y., Zhang B., Huang Z. (2019) Structural insights into a high fidelity variant of SpCas9. Cell Res. 29, 183‒192.
- Wang G., Wang C., Chu T., Wu X., Anderson C.M., Huang D., Li J. (2023) Deleting specific residues from the HNH linkers creates a CRISPR-SpCas9 variant with high fidelity and efficiency. J. Biotechnol. 368, 42‒52.
- Sykes P.J., Neoh S.H., Brisco M.J., Hughes E., Condon J., Morley A.A. (1992) Quantitation of targets for PCR by use of limiting dilution. Biotechniques. 13, 444‒449.
- Rose J.C., Stephany J.J., Valente W.J., Trevillian B.M., Dang H.V., Bielas J.H., Maly D.J., Fowler D.M. (2017) Rapidly inducible Cas9 and DSB-ddPCR to probe editing kinetics. Nat. Methods. 14, 891‒896.
- Miyaoka Y., Mayerl S.J., Chan A.H., Conklin B.R. (2018) Detection and quantification of HDR and NHEJ induced by genome editing at endogenous gene loci using droplet digital PCR. Methods Mol. Biol. 1768, 349‒362.
- Wei C.T., Maly D.J., Fowler D.M. (2020) Temporal and rheostatic control of genome editing with a chemically-inducible Cas9. Methods Enzymol. 633, 119‒141.
- Dibitetto D., La Monica M., Ferrari M., Marini F., Pellicioli A. (2018) Formation and nucleolytic processing of Cas9-induced DNA breaks in human cells quantified by droplet digital PCR. DNA Repair (Amst.). 68, 68‒74.
- Helfer-Hungerbuehler A.K., Shah J., Meili T., Boenzli E., Li P., Hofmann-Lehmann R. (2021) Adeno-associated vector-delivered CRISPR/SaCas9 system reduces feline leukemia virus production in vitro. Viruses. 13(8), 1636.
- Guschin D.Y., Waite A.J., Katibah G.E., Miller J.C., Holmes M.C., Rebar E.J. (2010) A rapid and general assay for monitoring endogenous gene modification. Methods Mol. Biol. 649, 247‒256.
- Auer B., Kumar R., Schmidt J.R., Skinner J.L. (2007) Hydrogen bonding and Raman, IR, and 2D-IR spectroscopy of dilute HOD in liquid D2O. Proc. Natl. Acad. Sci. USA. 104, 14215‒14220.
- Shibata M., Nishimasu H., Kodera N., Hirano S., Ando T., Uchihashi T., Nureki O. (2017) Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy. Nat. Commun. 8, 1430.
- Nishimasu H., Ran F.A., Hsu P.D., Konermann S., Shehata S.I., Dohmae N., Ishitani R., Zhang F., Nureki O. (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 156, 935‒949.
- Palecz B. (2002) Enthalpic homogeneous pair interaction coefficients of L-alpha-amino acids as a hydrophobicity parameter of amino acid side chains. J. Am. Chem. Soc. 124, 6003‒6008.
- Fauchère J.L., Charton M., Kier L.B., Verloop A., Pliska V. (1988) Amino acid side chain parameters for correlation studies in biology and pharmacology. Int. J. Pept. Protein Res. 32, 269‒278.
- Fu Y., Foden J.A., Khayter C., Maeder M.L., Reyon D., Joung J.K., Sander J.D. (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822‒826.
- Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S., Agarwala V., Li Y., Fine E.J., Wu X., Shalem O., Cradick T.J., Marraffini L.A., Bao G., Zhang F. (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827‒832.
- Vakulskas C.A., Dever D.P., Rettig G.R., Turk R., Jacobi A.M., Collingwood M.A., Bode N.M., McNeill M.S., Yan S., Camarena J., Lee C.M., Park S.H., Wiebking V., Bak R.O., Gomez-Ospina N., Pavel-Dinu M., Sun W., Bao G., Porteus M.H., Behlke M.A. (2018) A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 24, 1216‒1224.
- Kulcsár P.I., Tálas A., Tóth E., Nyeste A., Ligeti Z., Welker Z., Welker E. (2020) Blackjack mutations improve the on-target activities of increased fidelity variants of SpCas9 with 5’G-extended sgRNAs. Nat. Commun. 11, 1223.
Дополнительные файлы

Примечание
#Полный текст статьи на английском языке размещен на сайте издательства Springer – https://link.springer.com/journal/11008