Calculating the Gibbs Energy of Solvation of Pyridine in Nonaqueous Solvents
- Авторлар: Kuz’mina I.A.1, Kovanova M.A.1, Perova S.O.1
-
Мекемелер:
- Ivanovo State University of Chemistry and Technology
- Шығарылым: Том 97, № 8 (2023)
- Беттер: 1084-1086
- Бөлім: ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ
- ##submission.dateSubmitted##: 26.02.2025
- ##submission.datePublished##: 01.08.2023
- URL: https://innoscience.ru/0044-4537/article/view/668672
- DOI: https://doi.org/10.31857/S0044453723080125
- EDN: https://elibrary.ru/QVEWGX
- ID: 668672
Дәйексөз келтіру
Аннотация
Gibbs energies of the solvation of pyridine (Py) in methanol, acetonitrile, and N,N-dimethylformamide are calculated via quantum chemical modeling. Contributions from universal and specific types of interaction between the Py and solvent molecules to the change in the Gibbs energies of solvation of the aromatic heterocycle are determined when alcohol is replaced with aprotic solvents.
Негізгі сөздер
Авторлар туралы
I. Kuz’mina
Ivanovo State University of Chemistry and Technology
Email: mariia.a.kovanova@gmail.com
153000, Ivanovo, Russia
M. Kovanova
Ivanovo State University of Chemistry and Technology
Email: mariia.a.kovanova@gmail.com
153000, Ivanovo, Russia
S. Perova
Ivanovo State University of Chemistry and Technology
Хат алмасуға жауапты Автор.
Email: mariia.a.kovanova@gmail.com
153000, Ivanovo, Russia
Әдебиет тізімі
- Шарнин В.А., Усачева Т.Р., Кузьмина И.А. и др. Комплексообразование в неводных средах: Сольватационный подход к описанию роли растворителя. М.: ЛЕНАНД, 2019. 304 с.
- Pathania S., Rawal R.K. // Eur. J. Med. Chem. 2018. V. 157. P. 503. https://doi.org/10.1016/j.ejmech.2018.08.023
- Матис М.Е., Шмырова А.А., Малых У.В. и др. // Изв. вузов. Химия и хим. технология. 2021. Т. 64. № 10. С. 132. https://doi.org/10.6060/ivkkt.20216410.6489
- Pal S. Pyridine: A useful ligand in transition metal complexes // Pyridine. 2018. P. 57–74. https://doi.org/10.5772/intechopen.76986
- Nikolaev A., Legault C.Y., Minhao Z., Orellana A. // Org. Lett. 2018. V. 20. № 3. P. 796. https://doi.org/10.1021/acs.orglett.7b03938
- Wong V.C.-H., Po C., Leung S.Y.-L. et al. // J. Am. Chem. Soc. 2018. V. 140. № 2. P. 657. https://doi.org/10.1021/jacs.7b09770
- Liske A., Wallbaum L., Hölzel T. et al. // Inorg. Chem. 2019. V. 58. № 9. P. 5433. https://doi.org/10.1021/acs.inorgchem.9b00337
- Gould N.S., Li S., Cho H.J. et al. // Nat. Commun. 2020. V. 11. P. 1060. https://doi.org/10.1038/s41467-020-14860-6
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 03, Revision B.03 – Gaussian, Inc., Pittsburgh PA, 2003.
- Becke A.D. // J. Phys. Rev. A: At., Mol., Opt. Phys. 1988. V. 38. № 6. P. 3098.
- Stephens P.J., Devlin F.J., Chablowski C.F., Frisch M.J. // J. Chem. Phys. 1994. V. 98. № 45. P. 11623.
- Hertwig R.H., Koch W. // J. Chem. Phys. Lett. 1997. V. 268. № 5. P. 345.
- Dunning T.H. // J. Chem. Phys. 1989. V. 90. № 2. P. 1007.
- Zhurko G.A., Zhurko D.A. ChemCraft version 1.6 (build 312) ed. http://www.chemcraftprog.com/index.html
- Foresman J.B., Keith T.A., Wiberg K.B. et al. // J. Chem. Phys. 1996. V. 100. № 40. P. 16098.
- Kuz’mina I.A., Kovanova M.A. // J. Mol. Liq. 2022. V. 349. P. 118112. https://doi.org/10.1016/j.molliq.2021.118112
- Мошорин Г.В., Репкин Г.И., Шарнин В.А. // Журн. физ. химии. 2010. Т. 84. № 4. С. 618.
- Фиалков Ю.А. Не только в воде. Л.: Химия, 1989. 88 с.
Қосымша файлдар
