Experimental Investigation and Thermodynamic Modelling of Ag–In–Pd Ternary System

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Phase equilibria in Ag–In–Pd ternary system were studied using Scanning electron microscopy, Energy-dispersive X-ray spectroscopy (EDX) and X-Ray diffraction method (XRD). The solubilities of the third components in Ag–In and In–Pd binary phases were established, as well as composition ranges (from 4 to 17.5 at % Ag at 25 at % In) and crystal structure of τ ternary compound (Al3Ti). New thermodynamic assessment of Ag–In–Pd ternary system was performed, basing on the published experimental data and those obtained in the present work. Good agreement was achieved between the calculation results and the experimental data on phase equilibria and thermodynamic properties of the phases. The results of the calculation reproduce well experimental DTA/DSC data of three samples (the data were not included into the optimization). This additionally supports the correctness of the obtained thermodynamic description.

Sobre autores

A. Khoroshilov

Institute of General and Inorganic Chemistry

Email: kabanovaeg@gmail.com
Moscow, Russia

V. Kuznetsov

Chemical Faculty, Moscow State University

Email: kabanovaeg@gmail.com
Moscow, Russia

A. Pavlenko

Chemical Faculty, Moscow State University

Email: kabanovaeg@gmail.com
Moscow, Russia

E. Ptashkina

Chemical Faculty, Moscow State University

Email: kabanovaeg@gmail.com
Moscow, Russia

G. Zhmurko

Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: kabanovaeg@gmail.com
Moscow, Russia

E. Kabanova

Chemical Faculty, Moscow State University

Email: kabanovaeg@gmail.com
Moscow, Russia

M. Kareva

Chemical Faculty, Moscow State University

Autor responsável pela correspondência
Email: kabanovaeg@gmail.com
Moscow, Russia

Bibliografia

  1. Shin H.-J., Kwon Y.H., Seol H.-J. // J. Mech. Behav. Biomed. Mater. 2020. V. 107. P. 103728. https://doi.org/10.1016/j.jmbbm.2020.103728
  2. Zemanová A., Semenova O., Kroupa A. et al. // Monatsch. Chem. 2005. V. 136. № 11. P. 1931.https://doi.org/10.1007/s00706-005-0384-x
  3. Zemanová A., Semenova O., Kroupa A. et al. // Intermetallics. 2007. V.15. № 1. P. 77. https://doi.org/10.1016/j.intermet.2006.03.002
  4. Luef C., Flandorfer H., Ipser H. // Metall. Mater. Trans. A. 2005. V. 36. № 5. P. 1273. https://doi.org/10.1007/s11661-005-0219-8
  5. Garzeł G., Zabdyr L.A. // Rare Met. 2006. V. 25. № 5. P. 587. https://doi.org/10.1016/S1001-0521(06)60104-6
  6. STOE WinXPow, version 2.24. Darmstadt электронный ресурс. – Software package (10.2 Mb). Germany: STOE & Cie GmbH; 2009.
  7. Thermo-Calc®-Academic (Version 2022а) электронный ресурс. – Software package (235 Mb). – Stockholm: Thermo-Calc® Software AB.; 2022.
  8. Saunders N., Miodovnik A.P. CALPHAD (Calculation of Phase Diagrams): A comprehensive guide. London: Pergamon, 1998. 479 p.
  9. Kohlmann H., Ritter C. // Z. Anorg. Allg. Chem. 2009. V. 635. P. 1573. https://doi.org/10.1002/zaac.200900053
  10. Bhan S., Schubert K. // J. Less-Common Met. 1969. V. 17 P. 73. https://doi.org/10.1016/0022-5088(69)90038-1
  11. Ptashkina E.A., Kabanova E.G., Kalmykov K.B. et al. // J. of Alloys Comps. 2020. V. 845. P. 156166. https://doi.org/10.1016/j.jallcom.2020.156166
  12. Muzzillo C.P., Anderson T. // J. Mater. Sci. 2018. V. 53. № 9. P. 6893. https://doi.org/10.1007/s10853-018-1999-8
  13. Pavlenko A.S., Kabanova E.G., Kuznetsov V.N. // Russ. J. Phys. Chem. A. 2020. V. 94. № 13. P. 2691. https://doi.org/10.1134/s0036024420130178
  14. Jiang C., Liu Z.K. // Metall. Mater. Trans. A. 2002. V. 33. № 12. P. 3597. https://doi.org/10.1007/s11661-002-0235-x

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (529KB)
3.

Baixar (91KB)
4.

Baixar (63KB)

Declaração de direitos autorais © А.С. Павленко, Е.А. Пташкина, Г.П. Жмурко, Е.Г. Кабанова, М.А. Карева, А.В. Хорошилов, В.Н. Кузнецов, 2023