Синтез, структура и каталитические свойства нанокомпозитов на основе наночастиц палладия, закиси меди и магнетита, внедренных в наноцеллюлозную матрицу

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Получены нанокомпозитные материалы на основе наночастиц палладия, закиси меди и магнетита, внедренных в наноцеллюлозную матрицу с использованием методов осаждения-соосаждения in situ и ex situ из растворов солей соответствующих металлов. Исследования характеристик полученных композитов методами ИК-спектроскопии с преобразованием Фурье, рентгеновской дифракции, СЭМ и ПЭМ показали, что инкапсулированные наночастицы мало влияют на морфологию и структуру нанофибриллярной целлюлозы. Каталитические свойства нанокомпозитов испытаны в гидрировании нитробензола.

Texto integral

Acesso é fechado

Sobre autores

Е. Чепайкин

Институт структурной макрокинетики и проблем материаловедения им. А. Г. Мержанова РАН

Autor responsável pela correspondência
Email: echep@ism.ac.ru
Rússia, Черноголовка

С. Помогайло

Институт структурной макрокинетики и проблем материаловедения им. А. Г. Мержанова РАН; Всероссийский институт научной и технической информации РАН

Email: echep@ism.ac.ru
Rússia, Черноголовка; Москва

О. Ткаченко

Институт органической химии им. Н. Д. Зелинского РАН

Email: echep@ism.ac.ru
Rússia, Москва

Е. Шувалова

Институт органической химии им. Н. Д. Зелинского РАН

Email: echep@ism.ac.ru
Rússia, Москва

Л. Кустов

Институт органической химии им. Н. Д. Зелинского РАН; Московский государственный университет им. М. В. Ломоносова

Email: echep@ism.ac.ru
Rússia, Москва; Москва

В. Борщ

Институт структурной макрокинетики и проблем материаловедения им. А. Г. Мержанова РАН

Email: echep@ism.ac.ru
Rússia, Черноголовка

Е. Кнерельман

Федеральный исследовательский центр проблем химической физики и медицинской химии РАН

Email: echep@ism.ac.ru
Rússia, Черноголовка

Д. Помогайло

Московский государственный университет им. М. В. Ломоносова

Email: echep@ism.ac.ru
Rússia, Москва

Bibliografia

  1. Помогайло А.Д., Розенберг А.С., Уфлянд И.Е. // Наночастицы металлов в полимерах. М.: Химия, 2000. 672с. [Pomogailo A.D., Rozenberg A.S., Uflyand I.E. // Nanochasticy metallov v polimerah. Moscow. 2005. 672p.]
  2. Кустов А.Л., Дунаев С.Ф., Финашина Е.Д. // Журн. физ. химии. 2023. Т. 97. № 2. С. 223. [Kustov A.L., Dunaev S.F., Finashina E.D. // Russ. J. Phys. Chem. A. 2023. V. 97. P. 340] https://doi.org/10.1134/S0036024423020127
  3. Шестеркина А.А., Стрекалова А.А., Кустов Л.М. // Журн. физ. химии. 2020. Т. 94. № 6. С. 888. [Shesterkina A.A., Strekalova A.A. & Kustov L.M. // Russ. J. Phys. Chem. A. 2020. V. 94. P. 1180.] https://doi.org/10.1134/S0036024420060217
  4. Li D.-D., Zhang J.-W., Cai C. // Catalysis Communications. 2018. V.103. P. 47–50. https://doi.org/10.1016/j.catcom.2017.09.024
  5. Zhou Z., Lu C., Wu X. and Zhang X. // RSC Adv. 2013. 3. 26066 doi: 10.1039/c3ra43006e
  6. Hajdu, V., Prekob, Á., Muránszky, G. et al. // Reac Kinet Mech Cat. 2020. V.129. P. 107. https://doi.org/10.1007/s11144-019-01719-1
  7. Reddy K.R., Kumar N.S., Sreedhar B., M. Kantam M.L. // J. Mol. Catal. A: Chemical. 2006. V. 252. № 1–2. P. 136. https://doi.org/10.1016/j.molcata.2006.02.053.
  8. Кустов Л.М., Костюхин Е.М., Корнеева Е.Ю., Кустов А.Л. // Изв. АН. Сер. хим. 2023. Т. 72. № 3. С. 583. [Kustov L.M., Kostyukhin E.M., Korneeva E. Yu. and Kustov. A.L. // Russ. Chem. Bull. 2023. V. 72. № 3. P. 583.] https://doi.org/10.1007/s11172-023-3823-5
  9. Ahmad H. // J. Clust. Science. 2022. V. 33. P. 1421. https://doi.org/10.1007/s10876-021-02000-z
  10. Атаханов А.А., Сарымсаков А.А., Рашидова С.Ш. Наносистемы целлюлозы и серебра: синтез, структура, свойства. Ташкент: Изд-во «Фан» АН РУз. 2016. 256 с. [Atahanov A.A., Sarymsakov A.A., Rashidova S. Sh. Nanosistemy tsellyulozy i serebra, sintez, structura, svoistva. Tashkent. Izd-vo «Phan» AN Ruz. 2016. 256 p.]
  11. Nanocellulose. From Fundamentals to Advanced Materials. / Ed. by Jin Huang, Alain Dufresne and Ning Lin. / Wiley-VCH Verlag GmbH@ Co. KGaA. Weinheim. Germany. 486p.
  12. Зарубина А.Н., Иванкин А.Н., Кулезнев А.С., Кочетков В.А. Целлюлоза и наноцеллюлоза. Обзор // Лесной вестник 2019. Т. 23. № 5. С. 116. [Zarubina A.N., Ivankin A.N., Kuleznev A.S., Kochetkov V.A. // Forestry Bulletin. 2019. V. 23. № 5. P. 116.] https://doi.org/10.18698/2542-1468-2019-5-116-125.
  13. Котельникова Н.Е., Лысенко Е.Л., Serimaa R., и др. // Высокомолекуляр. Соед. А. 2008. Т. 50. № 1. С. 63. [Kotel´nikova N.E., Lysenko E.L., Serimaa R. et. al. // Polym. Sci. Ser. A. 2008. 50. P. 51.] https://doi.org/10.1134/S0965545X08010094
  14. Скатова А.В, Сарин С.А., Щипунов Ю.А. // Коллоидн. журн. 2020. Т. 82. № 3. С. 377. https://doi.org/10.31857/S002329122003012X [Skatova A.V., Sarin S.A., Shchipunov Y.A. // Colloid Journal. 2020. V. 82. № 3. P. 324.] https://doi.org/10.31857/S002329122003012X
  15. Reddy K.R., Kumar N.S., Sreedhar B., M. Kantam M.L. // J. Mol. Catal. A: Chemical. 2006. V. 252. № 1–2. P. 136. https://doi.org/10.1016/j.molcata.2006.02.053.
  16. Kirillova M.V., Santos C.I.M., Wu W., et. al. // J. Mol. Cat. A: Chem. 2017. 426. P. 343. https://doi.org/10.1016/j.molcata.2016.06.028.
  17. Новиков А.А., Аникушин Б.М., Петрова Д.А., и др. // Химия и технология топлив и масел. 2018. Т. 609. № 5. С. 27. [Novikov A.A., Anikushin B.M., Petrova D.A., et. al. // Chemistry and Technology of Fuels and Oils. 2018. V. 54. № 5. P. 564.] https://doi.org/10.1007/s10553-018-0960-5
  18. Кашин А.С., Анаников В.П. // Изв. АН. Сер. хим. 2011. № 12. С. 2551. [Kashin A.S., Ananikov V.P. // Russ. Chem. Bull. 2011. V. 60. P. 2602]. https://doi.org/10.1007/s11172-011-0399-x
  19. Качала В.В., Хемчян Л.Л., Кашин А.С., и др. // Успехи химии. 2013. 82. 648–685. [Kachala V.V., Klemchyan L.L., Kashin A.S. et al.// Russ. Chem. Rev. 2013. V. 82. C. 648.] https://doi.org/10.1070/RC2013v082n07ABEH004413
  20. Segal L., Creely J.J., Martin A.E. et al. // Textile research journal. 1959. V. 29. P. 786. http://dx.doi.org/10.1177/004051755902901003
  21. Nelson M.L., O’Connor R.T. // J. Appl. Polym. Sci. 1964. V. 8. № 3. P. 1325. https://doi.org/10.1002/app.1964.070080323
  22. Mironenko R.M., Belskaya O.B., Stepanova L.N. et al. // Catal. Lett. 2020. V. 150. P. 888. https://doi.org/10.1007/s10562-019-02974-6
  23. Kazemimoghadam M. // Intern. J. of Scientific Research in Research Paper. Chemical Sciences. 2017. V. 4. Is. 5. P. 1.
  24. Kirichenko O.A., Shuvalova E.V. & Redina E.A. // Russ. Chem. Bull. 2019. V. 68. P. 2048. https://doi.org/10.1007/s11172-019-2665-2
  25. Shuvalova E.V., Kirichenko O.A. // Mendeleev Commun. 2021. V. 31. № 6. P. 875–877. https://doi.org/10.1016/j.mencom.2021.11.036
  26. Shesterkina A.A., Shuvalova E.V., Kirichenko O.A. et al. // Russ. J. Phys. Chem. A. 2017. V. 91. P. 201. https://doi.org/10.1134/S0036024417020285

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Microphotographs of nanofibrillar cellulose obtained by SEM (a) and PEM (b)

Baixar (152KB)
3. Fig. 2. Diffractograms of NFC, Cu2O@NFC, Pd@NFC, PdCu2O@NFC; Θ - reflection angle

Baixar (201KB)
4. Fig. 3. IR spectra of samples: NFC, Cu2O@NFC, Pd@NFC, PdCu2O@NFC; ν - wave number

Baixar (168KB)
5. Fig. 4. Diffractogram of Fe3O4@NFC sample

Baixar (84KB)
6. Fig. 5. SEM micrograph of Fe3O4@NFC nanocomposite

Baixar (108KB)
7. Fig. 6. SEM and SEM micrographs of Cu2O@NFC

Baixar (142KB)
8. Fig. 7. Histogram of copper oxide nanoparticles distribution in nanocellulose matrix; N - number of particles, d - particle diameter

Baixar (52KB)
9. Fig. 8. SEM and TEM micrographs of the Pd@NFC sample

Baixar (219KB)
10. Fig. 9. Histogram of palladium nanoparticles distribution in nanocellulose matrix

Baixar (50KB)
11. Scheme 1

Baixar (41KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024