Влияние отталкивательных электронных состояний на параметры тонкой структуры основного электронного состояния радикала OH

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В рамках аппарата теории возмущений (контактных преобразований Ван Флека) выполнены расчеты вкладов возбужденных электронных состояний в параметры тонкой структуры основного электронного состояния радикала OH. Необходимые для этого функции потенциальной энергии электронных состояний и матричные элементы спин-орбитального и электронно-вращательного взаимодействия найдены из первых принципов. Показано, что отталкивательные (разлетные) возбужденные электронные состояния играют ключевую роль в зависимости параметров тонкой структуры основного состояния от величины колебательного возбуждения.

Об авторах

С. В. Козлов

Московский государственный университет имени М. В. Ломоносова

Автор, ответственный за переписку.
Email: kozlovsv@my.msu.ru

Химический факультет

Россия, Москва

Е. А. Пазюк

Московский государственный университет имени М. В. Ломоносова

Email: kozlovsv@my.msu.ru

Химический факультет

Россия, Москва

А. В. Столяров

Московский государственный университет имени М. В. Ломоносова

Email: kozlovsv@my.msu.ru

Химический факультет

Россия, Москва

Список литературы

  1. Meléndez J., Barbuy B. // Astrophys. J. 2002. V. 575. № 1. P. 474.
  2. Asplund M., Grevesse N., Sauval A.J. et al. // Astron. Astrophys. 2004. V. 417. № 2. P. 751.
  3. Goicoechea J.R., Cernicharo J. // Astrophys. J. 2002 V. 576. № 1. P. L77.
  4. Meinel A.B. // Ibid. 1950 V. 111. P. 555
  5. Meinel A.B. // Ibid. 1950 V. 112. P. 120
  6. Grevesse N., Sauval A.J., van Dishoeck E.F. // Astron. Astrophys. 1984. V. 141. P. 10
  7. Smith Y. Lambert D.L. // Astrophys. J. 1986. V. 311. P. 843.
  8. Piccioni G., Drossart P., Zasova L. et al. // Astron. Astrophys. 2008. V. 483. N. 3. P. L29.
  9. Clancy T., Sandor B.J., Garcia-Munoz A. et al. // Icarus. 2013. V. 226. N. 1. P. 272.
  10. Schoerghofer N., Benna M., Berezhnoy A.A. et al. // Space Sci. Rev. 2021. V. 217. N. 6. P. 74
  11. Gordon I.E., Rothman L.S., Hargreaves R.J. et al. // JQSRT. 2022. V. 277. P. 107949.
  12. Delahaye T., Armante R., Scott N.A. et al. // J. Mol. Spectrosc. 2021. V. 380. P. 111510.
  13. Brown J.M., Colbourne E.A., Watson J.K.G., Wayne F.D. // J. Mol. Spectrosc. 1979. V. 74. № 2. P. 294.
  14. Bernath P.F., Colin R. // J. Mol. Spectrosc. 2009. V. 257. N. 1. P. 20.
  15. Пазюк Е.А., Зайцевский А.В., Столяров А.В. и др. // Успехи химии 2015. Т. 84. № 10. С. 1001.
  16. Козлов С.В., Пазюк Е.А., Столяров А.В. // Оптика и спектроскопия. 2018. Т. 125. № 4. С. 445.
  17. Козлов С.В., Столяров А.В., Пазюк Е.А. //Там же. 2023. Т. 131. № 8. С. 1039.
  18. Yarkony D.R. // J. Chem. Phys. 1992. V. 97. № 3. P. 1838.
  19. Parlant G., Yarkony D.R. // J. Chem. Phys. 1999. V. 110. № 1. P. 363.
  20. Brooke J.S.A., Bernath P.F., Western C.M. et al. // JQSRT. 2016. V. 168. P. 142.
  21. Werner, H., Knowles, P., Knizia, G. et al. // MOLPRO. version 2010.1. a package of ab initio programs. 2010; http://www.molpro.net.
  22. Langhoff S.R., Sink M.L., Pritchard R.H., Kern C.W. // J. Mol. Spectrosc. 1982. V. 96. № 1. P. 200.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024