Термодинамические свойства титанатов иттрия, Y2Ti2O7, и европия, Eu2Ti2O7, в области температур 7–1800 К

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучена температурная зависимость теплоемкости Y2Ti2O7 и Eu2Ti2O7 со структурой пирохлора в интервале температур 7–1800 К. Подтверждено существование небольшой пологой аномалии теплоемкости у титаната европия в интервале 10–60 К. Рассчитаны термодинамические свойства (энтропия, изменение энтальпии и приведенной энергии Гиббса). На основании результатов расчета энергии Гиббса образования из оксидов обоих титанатов сделан вывод об их термодинамической стабильности в области высоких температур.

Полный текст

Доступ закрыт

Об авторах

П. Г. Гагарин

Институт общей и неорганической химии им. Н. С. Курнакова Российской академии наук

Автор, ответственный за переписку.
Email: gagarin@igic.ras.ru
Россия

А. В. Гуськов

Институт общей и неорганической химии им. Н. С. Курнакова Российской академии наук

Email: gagarin@igic.ras.ru
Россия

А. В. Хорошилов

Институт общей и неорганической химии им. Н. С. Курнакова Российской академии наук

Email: gagarin@igic.ras.ru
Россия

В. Н. Гуськов

Институт общей и неорганической химии им. Н. С. Курнакова Российской академии наук

Email: gagarin@igic.ras.ru
Россия

О. Н. Кондратьева

Институт общей и неорганической химии им. Н. С. Курнакова Российской академии наук

Email: gagarin@igic.ras.ru
Россия

М. А. Рюмин

Институт общей и неорганической химии им. Н. С. Курнакова Российской академии наук

Email: gagarin@igic.ras.ru
Россия

Г. Е. Никифорова

Институт общей и неорганической химии им. Н. С. Курнакова Российской академии наук

Email: gagarin@igic.ras.ru
Россия

К. С. Гавричев

Институт общей и неорганической химии им. Н. С. Курнакова Российской академии наук

Email: gagarin@igic.ras.ru
Россия

Список литературы

  1. Kramer S.A., Tuller H.L. // Solid State Ionics. 1995. V.82. P. 15. https://doi.org/10.1016/0167-2738(95)00156-Z.
  2. Norby T. // J. Mater. Chem. 2001. V.11. P. 11. https://doi.org/10.1039/B003463K.
  3. Wang Z., Wang X., Zhou G., et al.// J. Europ. Ceram. Soc. 2019. V.39. P. 3229. https://doi.org/10.1016/j.jeurceramsoc.2019.04.018.
  4. Saif M., Shebl M., Mbarek A., et al. // J. Photochem. Photobiol., A: Chemistry. 2015. V.301. P. 1. http://dx.doi.org/10.1016/j.jphotochem.2014.12.014
  5. Shi F.W., Meng X.J., Wang G.S., et al. // Phys. B: Condens. Matter. 2005. V.370. P. 277. doi: 10.1016/j.physb.2005.09.023.
  6. Lumpkin G.R., Pruneda M., Rios S., et al. // J. Solid State Chem. 2007. V.180. P. 1512. doi: 10.1016/j.jssc.2007.01.028.
  7. Vassen R., Jarligo M.O., Steinke T., et al. // Surf. Coat. Technol. 20101. V.205. P. 938. doi: 10.1016/j.surfcoat.2010.08.151
  8. Ren W., Trolier-McKinstry S., Randall C.A., et al. // J. Appl. Phys. 2001. V.89. P. 767. https://doi.org/10.1063/1.1328408
  9. Wuensch B.J., Eberman K.W., Heremans C., et al. // Solid State Ionics. 2000. V.129. P. 111. https://doi.org/10.1016/S0167-2738(99)00320-3
  10. Ewing R.C., Weber W.J., Lian J.. // J. Appl. Phys. 2004. V.95. P. 5949. https://doi.org/10.1063/1.1707213.
  11. Matteucci F., Cruciani G., Dondi M., et al. // Acta Mater. 2007. V.55. P. 2229. doi: 10.1016/j.actamat.2006.11.008.
  12. Subramanian M.A., Aravamudan G., Subba Rao G.V. // Prog. Solid State Chem. 1983. V.15. P. 55. https://doi.org:10.1016/0079-6786(83)90001-8.
  13. Cioatera N., Voinea E.A., Panaintescu E., et al. // Ceram. Int. 2016. V.42. P. 1492. http://dx.doi.org/10.1016/j.ceramint.2015.09.095.
  14. Dasgupta P., Jana Y.M., Nag Chattopadhyay A., et al. // J. Phys. Chem. Solids. 2007. V.68. P. 347. doi: 10.1016/j.jpcs.2006.11.022.
  15. Garbout A., Ben Taazayet-Belgacem I., Férid M. // J. Alloys and Compd. 2013. V.573. P. 43. http://dx.doi.org/10.1016/j.jallcom.2013.03.279.
  16. Farmer J.M., Boatner L.A., Chakoumakos B.C., et al. // J. Alloys Compd. 2014. V.605. P. 63. http://dx.doi.org/10.1016/j.jallcom.2014.03.153.
  17. Helean K.B., Ushakov S.V., Brown C.E., et al. // J. Solid State Chem. 2004. V.177. P. 1858. doi: 10.1016/j.jssc.2004.01.009
  18. Pruneda J.M., Artacho E. // Phys. Rev. B. 2005. V.72. P. 085107. https://doi.org/10.1103/PhysRevB.72.085107
  19. Johnson M.B., James D.D., Bourque A., et al. // J. Solid State Chem. 2009. V.182. P. 725. doi: 10.1016/j.jssc.2008.12.027
  20. Pal A., Singh A., Ghosh A.K., et al. // J. Magn. Magn. Mater. 2018. V.462. P. 1. https://doi.org/10.1016/j.jmmm.2018.04.060
  21. Reznitskii L.A. // Inorganic Materials. 1993. V.29. P. [Резницкий Л.А. // Неорган. материалы. 1993. Т. 29. № 9. С. 1310.]
  22. Kowalski P.M. // Scripta mater. 2020. V.189. P. 7. https://doi.org/10.1016/j.scriptamat.2020.07.048
  23. Rosen P.F., Woodfield B.F. // J. Chem. Thermodynamics. 2020. V.141. P. 105974. https://doi.org/10.1016/j.jct.2019.105974.
  24. Sabbah, R., Xu-wu, A., Chickos, et al. // Thermochim. Acta. 1999. V.331. P. 93–204. https://doi.org/10.1016/S0040-6031(99)00009-X
  25. Ryumin M.A., Nikiforova G.E., Tyurin A.V., et al. // Inorg. Mater. 2020. V. 56. P. 97. https://doi.org/0.1134/S0020168520010148 [Рюмин М.А., Никифорова Г.Е., Тюрин А.В., и др. // Неорган. материалы. 2020. Т. 56. С. 102]
  26. Prohaska T., Irrgeher J., Benefield J., et al. // Pure Appl. Chem. 2022. V.94. No.5. P. 573. https://doi.org/10.1515/pac-2019-0603.
  27. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V.54. P. 3243. doi: 10.1021/ja01347a029.
  28. Westrum E.F., Chirico R.D., Gruber J.B. // J. Chem. Thermodyn. 1980. V.12. P. 717. https://doi.org/10.1016/0021-9614(80)90169-X.
  29. Thiriet C., Konings R.J.M., Javorsky P., et al. // J. Chem. Thermodyn. 2005. V.37. P. 131. doi: 10.1016/j.jct.2004.07.031.
  30. Термические константы веществ. Справочник под ред. Глушко В.П. Москва 1965–1982. http: // www.chem.msu.ru.
  31. Könings R.J.M,. Beneš O., Kovács A., et al. // J. Phys. Chem. Ref. Data. 2014. V.43. P. 013101. doi: 10.1063/1.4825256
  32. Chase M.W., NIST-JANAF Thermochemical Tables, 4th ed. American Chemical Society. 1998.
  33. Gavrichev K.S., Gorbunov V.E., Golushina L.N., et al. // Russ. J. Phys. Chem. A. 1993. V. 67. P. 1554. [Гавричев К.С., Горбунов В.Е., Голушина Л.Н., и др. // Журн. физ. химии. 1993. Т. 67 № 8 С. 1731–1733.]

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Приложение
3. Рис. 1. Зависимости Cp/T(T2) (а) и теплоемкости (б) образцов Y2Ti2O7: а – в области самых низких температур по данным и б – изученных методом релаксационной калориметрии; линией изображена сглаженная теплоемкость из данных для всех образцов. Масса образцов: 9.93 (1), 21.10 (2), 31.65 мг (3).

Скачать (49KB)
4. Рис. 2. Рентгенограммы образцов Y2Ti2O7 (а) и Eu2Ti2O7 (б).

Скачать (49KB)
5. Рис. 3. Сопоставление данных по теплоемкостиY2Ti2O7 (а) и Eu2Ti2O7 (б): адиабатическая (1) и релаксационная (2) калориметрия.

Скачать (46KB)
6. Рис. 4. Теплоемкости Y2Ti2O7 в области низких температур (а) и в области 200–300 K (б); 1 – данные настоящей работы, 2 – данные работы [19].

Скачать (56KB)
7. Рис. 5. Сравнение теплоемкости Eu2Ti2O7 по данным [14] (1) и настоящей работы (2).

Скачать (26KB)
8. Рис. 6. Разность теплоемкости Eu2Ti2O7 и Y2Ti2O7 (1) и теплоемкость аномалии Шоттки для уровня 250 см–1 (2).

Скачать (25KB)
9. Рис. 7. Теплоемкость титанатов европия (1) и иттрия (2): ○ – данные ДСК, ■ – адиабатическая калориметрия.

Скачать (32KB)
10. Рис. 8. Энергия Гиббса образования Y2Ti2O7 (1) и Eu2Ti2O7 (2) из оксидов в интервале 298–1800 K.

Скачать (33KB)

© Российская академия наук, 2024