Synthesizing metal-organic UiO-66 framework in microwave fields based on polyethylene terephthalate waste for adsorptive removal of tartrazine food dye from aqueous solutions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The sample of metal-organic UiO-66 framework (Zr6O4(OH)4bdc, bdc = benzene-1,4-dicarboxylate/terephthalate), which is a promising adsorbent of persistent organic pollutants from aqueous medium, is obtained by the original method in the medium of unconventional “green” solvent, triethylene glycol (TEG), under conditions of microwave activation of reaction mass at atmospheric pressure according to one-step approach. PET-UiO-66 material is synthesized using polymer waste, viz. recycled polyethylene terephthalate (PET), as a source of organic linker (terephthalic or benzene-1,4-dicarboxylic acid, H2bdc) for framework formation. Its adsorption activity is first studied in the adsorption removal of tartrazine food dye (E-102) from aqueous solutions. It is found that the kinetics of the adsorption process obeys the pseudo-second-order model, and its thermodynamics corresponds to the Langmuir model.

全文:

受限制的访问

作者简介

V. Vergun

N. D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: polubrat@mail.ru
俄罗斯联邦, Moscow

M. Vedenyapina

N. D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences

Email: polubrat@mail.ru
俄罗斯联邦, Moscow

S. Kulaishin

N. D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences

Email: polubrat@mail.ru
俄罗斯联邦, Moscow

V. Chernyshev

A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences; M. V. Lomonosov Moscow State University

Email: polubrat@mail.ru
俄罗斯联邦, Moscow; Moscow

O. Tkachenko

N. D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences

Email: polubrat@mail.ru
俄罗斯联邦, Moscow

V. Nissenbaum

N. D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences

Email: polubrat@mail.ru
俄罗斯联邦, Moscow

V. Isaeva

N. D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences

Email: polubrat@mail.ru
俄罗斯联邦, Moscow

参考

  1. Chaturvedi P., Shukla P., Giri B.S. et al. // Environmental Res. 2021. T. 194. P. 110664.
  2. Ezzatahmadi N., Marshall D.L., Hou K. et al. // J. Environ. Chem. Eng. 2019. V. 7. P. 102955.
  3. Tang J., Wang T., Xia H. et al. // Sustainability. 2024. V. 16. P. 2042.
  4. Ariza-Tarazona M.C., Siligardi C., Carrėon-Loˇpez H.A. et al. // Marin. Pollut. Bull. 2023. V. 193. P. 115206.
  5. Yang R.X., Bieh Y.T., Chen C.H. et al. // ACS Sustainable Chem. Eng. 2021. V. 9. P. 6541.
  6. Kartik S., Balsora H.K., Sharma M. et. al. // Therm. Sci. Eng. Progr. 2022. V. 32. P. 101316.
  7. Ferreira M.M., Silva E.A., Cotting F. et. al. // Corros. Eng. Sci. Technol. 2021. V. 56. P. 199.
  8. Kaur G., Uisan K., Ong K.L. et. al. // Cur. Opin. in Green and Sust. Chem. 2018. V. 9 P. 30.
  9. Yang R.X., Bieh Y.T., Chen C.H. et. al. // ACS Sustainable Chem. Eng. 2021. V. 9. P. 6541.
  10. Rowsell J.L., Yaghi O.M. // Microporous and Mesoporous Mat. 2004. V. 73. P. 3.
  11. Ghazvini M.F., Vahedi M., Nobar S.N., et al. // J. Environ. Chem. Eng. 2021. V. 9. P. 104790.
  12. Ihsanullah. I. // Curr. Opin. Environ. Sci. Health. 2022. V. 26. P. 100335.
  13. Obeso J.L., Flores J.G., Flores C.V. et al. // Chem. Commun. 2023. V. 59. P. 10226.
  14. Baumann A.E., Burns D.A., Liu B. et al. // Commun Chem. 2019. V. 2. P. 86.
  15. Mendes R.F., Figueira F., Leite J.P. et al. // Chem. Soc. Rev. 2020. V. 49. P. 9121.
  16. Isaeva V.I., Vedenyapina M.D., Kurmysheva A.Y. et. al. // Molecules. 2021. V. 26. P. 6628.
  17. Cavka J., Jakobsen S., Olsbye U. et al. // JASC Com. 2008. V. 140. P. 42.
  18. Kazemi A., Moghadaskhou F., Pordsari M.A. et al. // Sci Rep. 2023. V. 13. № 19891.
  19. Ahmadijokani F., Molavi H., Rezakazemi M. et al. // Prog. Mater. Sci. 2022. V. 125. P. 100904.
  20. Rego R.M., Kurkuri M.D., Kigga M. // Chemosphere. 2022. V. 302. P. 134845.
  21. Ramanayaka S., Vithanage M., Sarmah A. et al. // RSC Adv. 2019. V. 9. P. 34359.
  22. Cao Z., Fu X., Li H. et al. // ACS Sustain. Chem. Eng. 2023. V. 11. P. 15506.
  23. Shanmugam M., Chuaicham C., Augustin A. et al. // New J. Chem. 2022. V. 46. P. 15776.
  24. Lo S.H., Raja D.S., Chen C.-W. et. al. // Dalton Trans. 2016. V. 45. P. 9565.
  25. Dyosiba X., Ren J., Musyoka N.M. et al. // Ind. Eng. Chem. Res. 2019. V. 58. P. 17010.
  26. Semyonov O., Kogolev D., Mamontov G. et al. // Chem. Eng. J. 2022. V. 431. P. 133450.
  27. Selahle S.K., Nqombolo A., Nomngongo P.N. // Sci Rep. 2023. V. 13. P. 6808.
  28. Waribam P., Katugampalage T.R., Opaprakasit P. et. al. // Chem. Eng. J. 2023. V. 473. P. 145349.
  29. Oymak T., Tokalıoglu S., Cam S. et al. // Food Additiv. Contamin. 2020. V. 37. P. 731.
  30. Singh H., Goyal A., Bhardwaj S. et al. // Mater. Sci. Eng. 2023. V. 288. P. 116165.
  31. Качала В.В., Хемчян Л.Л., Кашин А.С. и др. // Успехи химии. 2013. Т. 82. С. 648.
  32. Кашин А.С., Анаников В.П. // Изв. АН Сер. Хим. 2011. Т. 12. С. 2551.
  33. Tsyganenko A.A., Filimonv V.N. // J. Mol. Struct. 1972. V. 5. P. 477.
  34. Ivanov A.V., Kustov L.M. // Russ. Chem. Bull. 2000. V. 49. P. 39.
  35. Köck E.M., Kogler M., Götsch T. et. al. // Dalton Trans. 2017. V. 46. P. 4554.
  36. Jung K.D., Bell A. // J. Catal. 2000. V. 193. P. 207.
  37. Ouyang F., Kondo J.N. // JCS Faraday Trans. 1996. V. 92. P. 4491.
  38. Cheng X., Zhang A., Hou K. et. al. // Dalton Trans. 2013. V. 42. P. 13698.
  39. Huang J., Yan Z. // Langmuir. 2018. V. 34. P. 1890.
  40. Lagergren S. // Sakademiens Handl. 1898. V. 24. P. 1.
  41. Ho Y.S., Mckay G. // Proc. Biochem. 1999. V. 34. P. 451.
  42. Zeldowitsch J. // Acta Physicochim. 1934. V. 1. P. 364.
  43. Langmuir I. // Part I. Solids. 1916. V. 184. P. 102.
  44. Dippong T., Andrea E., Cadar O. et. al. // J. of Alloys and Comp. 2020. V. 849. P. 156695.
  45. Srivastava V., Sharma Y.C., Sillanpää M. // Applied Surf. Sci. 2015. V. 338. P. 42.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structural formula of tartrazine.

下载 (35KB)
3. Fig. 2. Diffractogram of PET-UiO-66 material. The vertical sections show the calculated reflex positions for the classical UiO-66 structure with the cubic cell parameter a = 20.75 A and spatial symmetry group Fm-3m.

下载 (60KB)
4. Fig. 3. SEM (a) and STEM (b) images of PET-UiO-66 material.

下载 (192KB)
5. Fig. 4. SEM-EDX mapping of PET-UiO-66 material.

下载 (593KB)
6. Fig. 5. Overview spectra of classic-UiO-66 and PET-UiO-66 samples after thermovacuum treatment (150°C).

下载 (80KB)
7. Fig. 6. TG (a) and DTA (b) curves for PET-UiO-66 and classic-UiO-66 materials.

下载 (102KB)
8. Fig. 7. Adsorption kinetics of tartrazine on a PET-UiO-66 sample. Dots - experimental data, lines - model calculations.

下载 (177KB)
9. Fig. 8. Tartrazine adsorption isotherms on PET-UiO-66 material.

下载 (70KB)

版权所有 © Russian Academy of Sciences, 2025