Low-temperature one-pot synthesis of tin(II) sulfide nanocrystalline thin films
- Autores: Kozhevnikova N.S.1,2, Maskaeva L.N.2,3, Enyashin A.N.1, Lipina O.A.1, Tyutyunnik A.P.1, Selyanin I.O.1, Baklanova I.V.1, Kuznetsov M.V.1, Markov V.F.2,3
- 
							Afiliações: 
							- Institute of Solid State Chemistry UB RAS
- Ural Federal University
- Ural Institute of State Fire Service of EMERCOM of Russia
 
- Edição: Volume 69, Nº 1 (2024)
- Páginas: 3-13
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://innoscience.ru/0044-457X/article/view/665959
- DOI: https://doi.org/10.31857/S0044457X24010011
- EDN: https://elibrary.ru/RNPGYM
- ID: 665959
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Photosensitive thin films of tin (II) sulfide with p-type conductivity and a band gap of 1.03 ± 0.09 eV have been obtained within the framework of the principles of «green chemistry» using the one-pot approach. In order to expand the range of sulfidizers used in the technology of deposition of thin nanostructured SnS films by chemical deposition, the efficiency of using sodium thiosulfate solutions is shown. It has been found that thin SnS films with good adhesion to a dielectric substrate and a size of coherent scattering regions of about 30 nm can be obtained as a result of a chemical reaction of the hydrolytic decomposition of thiosulfate ions. The conditions for obtaining SnS are substantiated by the thermodynamic analysis of ionic equilibria. Quantum-chemical calculations show that the p-type conductivity of the synthesized SnS films is most likely due to tin vacancies.
Texto integral
 
												
	                        Sobre autores
N. Kozhevnikova
Institute of Solid State Chemistry UB RAS; Ural Federal University
							Autor responsável pela correspondência
							Email: kozhevnikova@ihim.uran.ru
				                					                																			                												                	Rússia, 							Ekaterinburg; Ekaterinburg						
L. Maskaeva
Ural Federal University; Ural Institute of State Fire Service of EMERCOM of Russia
														Email: kozhevnikova@ihim.uran.ru
				                					                																			                												                	Rússia, 							Ekaterinburg; Ekaterinburg						
A. Enyashin
Institute of Solid State Chemistry UB RAS
														Email: kozhevnikova@ihim.uran.ru
				                					                																			                												                	Rússia, 							Ekaterinburg						
O. Lipina
Institute of Solid State Chemistry UB RAS
														Email: kozhevnikova@ihim.uran.ru
				                					                																			                												                	Rússia, 							Ekaterinburg						
A. Tyutyunnik
Institute of Solid State Chemistry UB RAS
														Email: kozhevnikova@ihim.uran.ru
				                					                																			                												                	Rússia, 							Ekaterinburg						
I. Selyanin
Institute of Solid State Chemistry UB RAS
														Email: kozhevnikova@ihim.uran.ru
				                					                																			                												                	Rússia, 							Ekaterinburg						
I. Baklanova
Institute of Solid State Chemistry UB RAS
														Email: kozhevnikova@ihim.uran.ru
				                					                																			                												                	Rússia, 							Ekaterinburg						
M. Kuznetsov
Institute of Solid State Chemistry UB RAS
														Email: kozhevnikova@ihim.uran.ru
				                					                																			                												                	Rússia, 							Ekaterinburg						
V. Markov
Ural Federal University; Ural Institute of State Fire Service of EMERCOM of Russia
														Email: kozhevnikova@ihim.uran.ru
				                					                																			                												                	Rússia, 							Ekaterinburg; Ekaterinburg						
Bibliografia
- Brent J.R., Lewis D.J., Lorenz T. et al. // J. Am. Chem. Soc. 2015. V. 137. № 39. P. 12689. https://doi.org/10.1021/jacs.5b08236
- Banai R.E., Horn M.W., Brownson J.R.S. // Sol. Energy Mater. Sol. Cells. 2016. V. 150. P. 112. http://dx.doi.org/10.1016/j.solmat.2015.12.001
- Reddy K.T.R., Reddy N.K., Miles R.W. // Sol. Energy Mater. Sol. Cells. 2006. V. 90. № 18–19. P. 3041. https://doi.org/10.1016/j.solmat.2006.06.012
- Mathews N.R., Anaya H.B.M., Cortes-Jacome M.A. et al. // J. Electrochem. Soc. 2010. V. 157. № 3. P. H337. https://doi.org/10.1149/1.3289318
- Bashkirov S.A., Gremenok V.F., Ivanov V.A. et al. // Thin Solid Films. 2012. V. 520. P. 5807. https://doi.org/10.1016/j.tsf.2012.04.030
- Kabouche S., Bellal B., Louafi Y. et al. // Mater. Chem. Phys. 2017. V. 195. P. 229. https://doi.org/10.1016/j.matchemphys.2017.04.031
- Gao W., Wu C., Cao M. et al. // J. Alloys Compd. 2016. V. 688. Part A. P. 668. https://doi.org/10.1016/j.jallcom.2016.07.083
- Один И.Н., Гапанович М.В., Урханов О.Ю. и др. // Неорган. материалы. 2021. Т. 57. № 1. С. 3. [Odin I.N., Gapanovich M.V., Urkhanov O.Y., et al // Inorganic Materials. 2021. V. 57. № 1. P. 3].
- Гапанович М.В., Ракитин В.В., Новиков Г.Ф. // Журн. неорган. химии. 2022. Т. 67. № 1. С. 3. [Gapanovich M.V., Rakitin V.V., Novikov G.F. // Russ. J. Inorg. Chem. 2022. Т. 67. № 1. P. 1. https://doi.org/10.1134/S0036023622010041]
- Schneikart A., Schimper H.-J., Klein A. et al. // J. Phys. D: Appl. Phys. 2013. V. 46. № 30. P. 305109. https://doi.org/10.1088/0022-3727/46/30/305109
- Башкиров С.А., Гременок В.Ф., Иванов В.А. и др. // Физика твердого тела. 2012. Т. 54. № 12. C. 2372.
- Hartman K., Johnson J.L., Bertoni M.I. et al. // Thin Solid Films. 2011. V. 519. № 21. P. 7421. https://doi.org/10.1016/j.tsf.2010.12.186
- Wangperawong A., Herron S.M., Runser R.R. et al. // Appl. Phys. Lett. 2013. V. 103. P. 052105. https://doi.org/10.1063/1.4816746
- Sinsermsuksakul P., Heo J., Noh W. et al. // Adv. Energy Mater. 2011. V. 1. № 6. P. 1116. https://doi.org/10.1002/aenm.201100330
- Ballipinar F., Rastogi A.C. // J. Alloys Compd. 2017. V. 728. P. 179. 10.1016/j.jallcom.2017.08.295
- Sajeesh T.H., Warrier A.R., Kartha C.S. et al. // Thin Solid Films. 2010. V. 518. № 15. P. 4370. https://doi.org/10.1016/j.tsf.2010.01.040
- Takeuchia K., Ichimuraa M., Araia E. et al. // Sol. Energy Mater. Sol. Cells. 2003. V. 75. № 3–4. P. 427. https://doi.org/10.1016/S0927-0248(02)00192-7
- Avellaneda D., Nair M.T.S., Nair P.K. // J. Electrochem. Soc. 2008. V. 155. № 7. P. D517. https://doi.org/10.1149/1.2917198
- Hayakawa R., Takano Y. // Thin Solid Films. 2017. V. 636. P. 171. https://doi.org/10.1016/j.tsf.2017.06.005
- Маскаева Л.Н., Федорова Е.А., Шемякина А.И. и др. // Бутлеровские сообщения. 2014. Т. 37. № 2. С. 1. [Maskaeva L.N., Fyodorova E.A., Shemyakina A.I. et al. // Butlerov Commun. 2014. Vol. 37. №2. P.1]
- Chalapathi U., Poornaprakash B., Park S.H. // Solar Energy. 2016. V. 139. P. 238. https://doi.org/10.1016/j.solener.2016.09.046
- Chalapathi U., Poornaprakash B., Park S.H. // J. Alloys Compd. 2016. V. 689. P. 938. https://doi.org/10.1016/j.jallcom.2016.08.066
- Титов В.А., Рыбкин В.В., Соколов В.Ф. и др. Электронное материаловедение: Лабораторный практикум. Иваново: Иван. гос. хим.-технол. ун-т, 2003. 108 c.
- Ordejon P., Artacho E., Soler J.M. // Phys. Rev. B. 1996. V. 53. Р. R10441. http://dx.doi.org/10.1103/PhysRevB.53.R10441
- García A., Papior N., Akhtar A. et al. // J. Chem. Phys. 2020. V. 152. P. 204108. https://doi.org/10.1063/ 5.0005077
- Марков В.Ф., Маскаева Л.Н., Иванов П.Н. Гидрохимическое осаждение пленок сульфидов металлов: моделирование и эксперимент. Екатеринбург: УрО РАН, 2006. 218 с.
- Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1971. 456 с.
- Williamson G.K., Hall W.H. // Acta Metall. 1953. V. 1. P. 22. https://doi.org/10.1016/0001-6160(53)90006-6
- Chandrasekhar H.R., Humphreys R.G., Zwick U. et al. // Phys. Rev. B. 1977. V. 15. P. 2177.
- Stranick M.A., Moskwa A. // Surf. Sci. Spectra. 1993. V. 2. P. 45. https://doi.org/10.1116/1.1247723
- Patel M., Kim J. // Data in Brief. 2017. V. 15. P. 252. https://doi.org/10.1016/j.dib.2017.09.037.
- Vidal J., Lany S., d’Avezac M. et al. // Appl. Phys. Lett. 2012. V. 100. № 3. P. 032104. https://doi.org/10.1063/1.3675880
- Попов И.С., Кожевникова Н.С., Еняшин А.Н. и др. // Докл. АН. Сер. Физ. химия. 2017. Т. 472. № 4. С. 416. [Popov I.S., Kozhevnikova N.S., Enyashin A.N. at al. // Doklady Physical Chemistry. 2017. V. 472. № 2. Р. 23. https://doi.org/10.1134/S0012501617020026]
- Kozhevnikova N.S., Maskaeva L.N., Lekomtseva E.E. et al. // Nanosystems: Physics, Chemistry, Mathematics. 2020. V. 11. № 5. P. 529. https://doi.org/10.17586/2220-8054-2020-11-5-529-536
- Li W., Walther C.F.J., Kuc A. et al. // J. Chem. Theory Comput. 2013. V. 9. № 7. P. 2950. https://doi.org/10.1021/ct400235w
- Guneri E., Ulutas C., Kirmizigul F. et al. // Appl. Surf. Sci. 2010. V. 257. № 4. P. 1189. https://doi.org/10.1016/j.apsusc.2010.07.104
- Hartman K., Johnson J.L., Bertoni M.I. et al. // Thin Solid Films. 2011. V. 519. № 21. P. 7421. https://doi.org/10.1016/j.tsf.2010.12.186
- Koteeswara Reddy N., Hahn Y.B., Devika M. et al. // J. Appl. Phys. 2007. V. 101. P. 093522. https://doi.org/10.1063/1.2729450
- Parenteau M., Carlone C. // Phys. Rev. B. 1990. V. 41. P. 5227.
- Burton L.A., Colombara D., Abellon R.D. // Chem. Mater. 2013. V. 25. № 24. P. 4908. https://doi.org/10.1021/cm403046m
- Titova L.V., Fregoso B.M., Grimm R.L. Chapter 5: Group-IV monochalcogenides GeS, GeSe, SnS, SnSe, in book Chalcogenide: From 3D to 2D and Beyond. Woodhead Publishing Series in Electronic and Optical Materials: 2020. Р. 119–151.
- Urbah F. // Phys. Rev. 1953. V. 92. P. 1324.
- Ролдугин В.И. // Успехи химии. 2003. Т. 72. № 10. С. 931. [Roldugin V.I. // Russ. Chem. Rev. 2003. V. 72. № 10. P. 931. https://doi.org/10.1070/RC2003v072n10ABEH000805]
- Торхов Н.А., Божков В.Г., Ивонин И.В. и др. // Физика и техника полупроводников. 2009. Т. 43. № 1. С. 38.
- Самсонов В.М., Кузнецова Ю.В., Дьякова Е.В. // Журн. техн. физики. 2016. Т. 86. № 2. С. 71.
- Сдобняков Н.Ю., Антонов А.С., Иванов Д.В. Морфологические характеристики и фрактальный анализ металлических пленок на диэлектрических поверхностях. Тверь: Тверской гос. ун-т, 2019. 168 с.
- Смирнов Б.М. Физика фрактальных кластеров. М.: Наука, 1991. 136 с.
- Смирнов Б.М. // Успехи физ. наук. 1986. Т. 149. № 2. С. 177.
- Федер Е. Фракталы / Пер. с англ. М.: Мир, 1991. 254 с.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 








