Синтез, строение и фотолюминесцентные свойства комплексов марганца(II) c 3-хлор-6-(3,5-диметил-1Н-пиразол-1-ил)пиридазином
- Авторы: Нафиков М.Д.1,2, Рахманова М.И.2, Первухина Н.В.2, Наумов Д.Ю.2, Сыроквашин М.M.2, Виноградова К.А.2
-
Учреждения:
- Новосибирский государственный университет
- Институт неорганической химии им. А.В. Николаева СО РАН
- Выпуск: Том 70, № 2 (2025)
- Страницы: 244-261
- Раздел: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://innoscience.ru/0044-457X/article/view/683201
- DOI: https://doi.org/10.31857/S0044457X25020109
- EDN: https://elibrary.ru/ICGZGH
- ID: 683201
Цитировать
Аннотация
Синтезированы комплексы бромида, перхлората и салицилата марганца(II) с 3-хлор-6-(3,5-диметил-1Н-пиразол-1-ил)пиридазином (L). Комплексы [MnL2Br2] (I), [MnL2(H2O)2](ClO4)2 (II) и [Mn3L2(Sal)6] · 2CH3CN (III) получены по реакции соответствующих солей марганца(II) и L в органических средах при мольном соотношении 1 : 1. По данным рентгеноструктурного анализа, комплексы I и II имеют одноядерное молекулярное и ионное строение соответственно, III – трехъядерное молекулярное. В комплексах атомы Mn находятся в искаженно-октаэдрическом окружении, координационный полиэдр – MnN4Br2 (I), MnN4O2 (II), Mn(1)N2O4 и Mn(2)O6 (III). Для комплексов I–III исследованы фотолюминесцентные (ФЛ) свойства в твердом состоянии и в растворе. В спектре поглощения комплекса III по сравнению со спектром L наблюдаются новые полосы при 310 и 340 нм, при возбуждении в этой области наблюдается двухполосная эмиссия с максимумами при 390 и 445 нм и наносекундными временами жизни. В твердом состоянии при температуре 300 K комплекс III обладает малоинтенсивной фосфоресценцией (λмакс = 420 нм). При охлаждении до 77 K в спектре ФЛ комплекса III появляются полосы при 520 и 585 нм, в спектре возбуждения наблюдаются полосы при 520 и 460 нм, обусловленные переходами в ионе Mn2+. Для комплексов I и III определены величины эффективного магнитного момента при 300 K, равные 5.82 и 5.70 М.Б. соответственно.
Полный текст

Об авторах
М. Д. Нафиков
Новосибирский государственный университет; Институт неорганической химии им. А.В. Николаева СО РАН
Email: kiossarin@mail.ru
Россия, 630090, Новосибирск, ул. Пирогова, 1; 630090, Новосибирск, пр-т Академика Лаврентьева, 3
М. И. Рахманова
Институт неорганической химии им. А.В. Николаева СО РАН
Email: kiossarin@mail.ru
Россия, 630090, Новосибирск, пр-т Академика Лаврентьева, 3
Н. В. Первухина
Институт неорганической химии им. А.В. Николаева СО РАН
Email: kiossarin@mail.ru
Россия, 630090, Новосибирск, пр-т Академика Лаврентьева, 3
Д. Ю. Наумов
Институт неорганической химии им. А.В. Николаева СО РАН
Email: kiossarin@mail.ru
Россия, 630090, Новосибирск, пр-т Академика Лаврентьева, 3
М. M. Сыроквашин
Институт неорганической химии им. А.В. Николаева СО РАН
Email: kiossarin@mail.ru
Россия, 630090, Новосибирск, пр-т Академика Лаврентьева, 3
К. А. Виноградова
Институт неорганической химии им. А.В. Николаева СО РАН
Автор, ответственный за переписку.
Email: kiossarin@mail.ru
Россия, 630090, Новосибирск, пр-т Академика Лаврентьева, 3
Список литературы
- Kumar K. // React. Chem. Eng. 2024. V. 9. № 3. P. 496. https://doi.org/10.1039/d3re00410d
- Бочкарев М.Н., Витухновский А.Г., Каткова М.А. Органические светоизлучающие диоды (OLED). М., 2011. 359 с.
- Mal’tsev E.I., Lypenko D.A., Dmitriev A.V. et al. // Russ. J. Coord. Chem. 2023. V. 49. P. S2. https://doi.org/10.1134/S107032842360078X
- Wang Z.B., Helander M.G., Qiu J. et al. // Nat. Photonics. 2011. V. 5. № 12. P. 753. https://doi.org/10.1038/nphoton.2011.259
- Li X., Xie Y., Li Z. // Chem. Asian. J. 2021. V. 16. № 19. P. 2817. https://doi.org/10.1002/asia.202100784
- Yersin H. // Triplet Emitters for OLED Applications. Mechanisms of Exciton Trapping and Control of Emission Properties, in: Top. Curr. Chem., 2004. P. 1–26. https://doi.org/10.1007/b96858
- Yersin H., Rausch A.F., Czerwieniec R. et al. // Coord. Chem. Rev. 2011. V. 255. № 21–22. P. 2622. https://doi.org/10.1016/j.ccr.2011.01.042
- Zhang J., Ye H., Jin Y. et al. // Top. Curr. Chem. 2022. V. 380. № 1. https://doi.org/10.1007/s41061-021-00357-3
- Alsaeedi M.S. // J. Saudi Chem. Soc. 2022. V. 26. № 2. P. 101442. https://doi.org/10.1016/j.jscs.2022.101442
- Li T.Y., Zheng S.J., Djurovich P.I. et al. // Chem. Rev. 2023. V. 124. № 7. P. 4332. https://doi.org/10.1021/acs.chemrev.3c00761
- Holler M., Delavaux-Nicot B., Nierengarten J.F. // Chem. Eur. J. 2019. V. 25. № 18. P. 4543. https://doi.org/10.1002/chem.201805671
- Yuan L., Zhang Y.P., Zheng Y.X. // Sci. China. Chem. 2024. V. 67. P. 1097. https://doi.org/10.1007/s11426-023-1910-1
- Patil V.V., Hong W.P., Lee J.Y. // Adv. Energy Mater. 2024. https://doi.org/10.1002/aenm.202400258
- Xiao Y., Wang H., Xie Z. et al. // Chem. Sci. 2022. V. 13. № 31. P. 8906. https://doi.org/10.1039/d2sc02201j
- Monkman A. // Photophysics of Thermally Activated Delayed Fluorescence, 2019, Chapter 12. P. 425. https://doi.org/10.1002/9783527691722.ch12
- Binnemans K. // Chem. Rev. 2009. V. 109. № 9. P. 4283. https://doi.org/10.1021/cr8003983
- Bünzli J.C.G. // Coord. Chem. Rev. 2015. V. 293–294. P. 19. https://doi.org/10.1016/j.ccr.2014.10.013
- Hasegawa Y., Kitagawa Y., Nakanishi T. // NPG Asia Mater. 2018. V. 10. № 4. P. 52. https://doi.org/10.1038/s41427-018-0012-y
- Wang L., Zhao Z., Wei C. et al. // Adv. Opt. Mater. 2019. V. 7. № 11. P. 1801256. https://doi.org/10.1002/adom.201801256
- Nehra K., Dalal A., Hooda A. et al. // J. Mol. Struct. 2022. V. 1249. P. 131531. https://doi.org/10.1016/j.molstruc.2021.131531
- Tao P., Liu S.J., Wong W.Y. // Adv. Opt. Mater. 2020. V. 8. № 20. P. 2000985. https://doi.org/10.1002/adom.202000985
- Qin Y., She P., Huang X. et al. // Coord. Chem. Rev. 2020. V. 416. P. 213331. https://doi.org/10.1016/j.ccr.2020.213331
- Xu L.J., Sun C.Z., Xiao H. et al. // Adv. Mater. 2017. V. 29. № 10. P. 1605739. https://doi.org/10.1002/adma.201605739
- Wu Y., Zhang X., Zhang Y.Q. et al. // Chem. Commun. 2018. V. 54. № 99. P. 13961. https://doi.org/10.1039/c8cc08665f
- Wu Y., Zhang X., Xu L.J. et al. // Inorg. Chem. 2018. V. 57. № 15. P. 9175. https://doi.org/10.1021/acs.inorgchem.8b01205
- Artemev A.V., Davydova M.P., Berezin A.S. et al. // Dalton Trans. 2019. V. 48. № 43. P. 16448. https://doi.org/10.1039/c9dt03283e
- Gong L.K., Hu Q.Q., Huang F.Q. et al. // Chem. Commun. 2019. V. 55. № 51. P. 7303. https://doi.org/10.1039/c9cc03038g
- O’Toole N., Lecourt C., Suffren Y. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 1. P. 73. https://doi.org/10.1002/ejic.201801104
- She P., Ma Y., Qin Y. et al. // Matter. 2019. V. 1. № 6. P. 1644. https://doi.org/10.1016/j.matt.2019.08.016
- Sun M.E., Li Y., Dong X.Y. et al. // Chem. Sci. 2019. V. 10. № 13. P. 3836. https://doi.org/10.1039/c8sc04711a
- Berezin A.S. // Dyes and Pigments. 2021. V. 196. P. 109782. https://doi.org/10.1016/j.dyepig.2021.109782
- Berezin A.S. // Int. J. Mol. Sci. 2021. V. 22. № 13. P. 687. https://doi.org/10.3390/ijms22136873
- Berezin A.S., Selivanov B., Danilenko A. et al. // Inorganics (Basel). 2022. V. 10. № 12. P. 245. https://doi.org/10.3390/inorganics10120245
- Zhou Z., Meng H., Li F. et al. // Inorg. Chem. 2023. V. 62. № 14. P. 5729. https://doi.org/10.1021/acs.inorgchem.3c00273
- Nikolić K., Burić I., Aleksić A. // Czechoslovak J. Phys. 1984. V. 34. № 6. P. 589. https://doi.org/10.1007/BF01595715
- Hardy G.E., Zink J.I. // Inorg. Chem. 1976. V. 15. № 12. P. 3061. https://doi.org/10.1021/ic50166a026
- Morad V., Cherniukh I., Pöttschacher L. et al. // Chem. Mater. 2019. V. 31. № 24. P. 10161. https://doi.org/10.1021/acs.chemmater.9b03782
- She P., Zheng Z., Qin Y. et al. // Adv. Opt. Mater. 2024. V. 12. № 10. P. 2302132. https://doi.org/10.1002/adom.202302132
- Lu J., Gao J., Wang S. et al. // Nano Lett. 2023. V. 23. № 10. P. 4351. https://doi.org/10.1021/acs.nanolett.3c00503
- Golovnev N.N., Gerasimova M.A., Ostapenko I.A. et al. // J. Mol. Struct. 2023. V. 1277. https://doi.org/10.1016/j.molstruc.2022.134851
- Gao C., Zhang X., Liang W. et al. // Inorg. Chem. Commun. 2023. V. 155. P. 111031. https://doi.org/10.1016/j.inoche.2023.111031
- Enikeeva K.R., Shamsieva A.V., Kasimov A.I. et al. // Inorg. Chim. Acta. 2023. V. 558. P. 121741. https://doi.org/10.1016/j.ica.2023.121741
- Davydova M.P., Meng L., Rakhmanova M.I. et al. // Adv. Mater. 2023. V. 35. № 35. P. 2303611. https://doi.org/10.1002/adma.202303611
- Zhang Z.C., Zhang T., Su C.Y. et al. // Inorg. Chem. 2022. V. 61. № 34. P. 13322. https://doi.org/10.1021/acs.inorgchem.2c01182
- Nikolič K., Lignou F., de la Garanderie H.P. // J. Lumin. 1973. V. 8. № 2. P. 137. https://doi.org/10.1016/0022-2313(73)90100-2
- Vijaya G.S., Atanu J., Cho S.C. et al. // Chem. Eng. J. 2023. V. 474. P. 145936. https://doi.org/10.1016/j.cej.2023.145936
- Chandra B.P., Khokhar M.S.K., Gupta R.S. et al. // Pramana. 1987. V. 29. № 4. P. 399. https://doi.org/10.1007/BF02845778
- Zhang Y.Z., Sun D.S., Chen X.G. et al. // Chem. Asian. J. 2019. V. 14. № 21. P. 3863. https://doi.org/10.1002/asia.201901150
- Jana A., Sree V.G., Ba Q. et al. // J. Mater. Chem. C. Mater. 2021. V. 9. № 34. P. 11314. https://doi.org/10.1039/d1tc02550c
- Jana A., Myung C.W., Sree V.G. et al. // Mater. Chem. Front. 2022. V. 6. № 20. P. 3102. https://doi.org/10.1039/d2qm00447j
- Qin Y., Tao P., Gao L. et al. // Adv. Opt. Mater. 2019. V. 7. № 2. P. 1801160. https://doi.org/10.1002/adom.201801160
- Suffren Y., O’Toole N., Hauser A. et al. // Dalton Trans. 2015. V. 44. № 17. P. 7991. https://doi.org/10.1039/c5dt00827a
- Berezin A.S., Samsonenko D.G., Brel V.K. et al. // Dalton Trans. 2018. V. 47. № 21. P. 7306. https://doi.org/10.1039/c8dt01041b
- Vinogradova K.A., Shekhovtsov N.A., Berezin A.S. et al. // Inorg. Chem. Commun. 2019. V. 100. P. 11. https://doi.org/10.1016/j.inoche.2018.12.002
- Bose D., Mostafa G., Fun H.K. et al. // Polyhedron. 2005. V. 24. № 6. P. 747. https://doi.org/10.1016/j.poly.2005.01.021
- Yang L., Yu W., Zhang T.L. et al. // Z. Anorg. Allg. Chem. 2007. V. 633. № 11–12. P. 2046. https://doi.org/10.1002/zaac.200700292
- Roy A.S., Biswas M.K., Weyhermüller T. et al. // Dalton Trans. 2011. V. 40. № 1. P. 146. https://doi.org/10.1039/C0DT00883D
- Yang Y.-Q., Zhang M.-B., Chen M.-S. et al. // Z. Naturforsch., B: Chem. Sci. 2012. V. 67. № 3. P. 209. https://doi.org/10.1515/znb-2012-0305
- Bera M., Jana S.K., Rana A. et al. // J. Inorg. Organomet. Polym. Mater. 2013. V. 23. № 3. P. 736. https://doi.org/10.1007/s10904-013-9840-y
- Chen J.X., Yang Z., Zhao S. et al. // Synth. React. Inorg. Met.-Org. Chem. 2013. V. 43. № 7. P. 897. https://doi.org/10.1080/15533174.2012.750672
- Zou J.H., Tian H., Wang Z. et al. // Z. Anorg. Allg. Chem. 2014. V. 640. № 12–13. P. 2566. https://doi.org/10.1002/zaac.201400252
- Hazari D., Jana S.K., Puschmann H. et al. // Transition Met. Chem. 2015. V. 40. № 6. P. 595. https://doi.org/10.1007/s11243-015-9952-z
- Liu D. // J. Coord. Chem. 2015. V. 68. № 10. P. 1655. https://doi.org/10.1080/00958972.2015.1021344
- Li X.Y., Zhang P., Tian H. et al. // Z. Anorg. Allg. Chem. 2015. V. 641. № 11. P. 1948. https://doi.org/10.1002/zaac.201500134
- Manna S.C., Mistri S., Jana A.D. // CrystEngComm. 2012. V. 14. № 21. P. 7415. https://doi.org/10.1039/c2ce25916h
- Vinogradova K.A., Berezin A.S., Taigina M.D. et al. // Inorg. Chim. Acta. 2024. V. 569. P. 122137. https://doi.org/10.1016/j.ica.2024.122137
- Adamski A., Wałȩsa-Chorab M., Kubicki M. et al. // Polyhedron. 2014. V. 81. P. 188. https://doi.org/10.1016/j.poly.2014.05.081
- Suckert S., Terraschke H., Reinsch H. et al. // Inorg. Chim. Acta. 2017. V. 461. P. 290. https://doi.org/10.1016/j.ica.2017.03.002
- Berezin A.S., Vinogradova K.A., Nadolinny V.A. et al. // Dalton Trans. 2018. V. 47. № 5. P. 1657. https://doi.org/10.1039/c7dt04535b
- Achelle S., Hodée M., Massue J. et al. // Dyes and Pigments. 2022. V. 200. P. 110157. https://doi.org/10.1016/j.dyepig.2022.110157
- Berezin A.S., Vinogradova K.A., Nadolinny V.A. et al. // Dalton Trans. 2018. V. 47. № 5. P. 1657. https://doi.org/10.1039/C7DT04535B
- Blake A.J., Hibbs D.E., Hubberstey P. et al. // Polyhedron. 1998. V. 17. № 20. P. 3583. https://doi.org/10.1016/S0277-5387(98)00153-3
- Blake A.J., Hubberstey P., Li W.-S. et al. // J. Chem. Soc., Dalton Trans. 1998. № 4. P. 647. https://doi.org/10.1039/a706105f
- Li X.R., Zhang Z.H., Liu X.F. et al. // J. Chem. Crystallogr. 2008. V. 38. № 10. P. 781. https://doi.org/10.1007/s10870-008-9390-2
- An C.X., Li X.R., Zhang Z.H. // Transition Met. Chem. 2009. V. 34. № 3. P. 255. https://doi.org/10.1007/s11243-009-9187-y
- Gupta G., Prasad K.T., Das B. et al. // J. Organomet. Chem. 2009. V. 694. № 16. P. 2618. https://doi.org/10.1016/j.jorganchem.2009.03.043
- Gupta G., Prasad K.T., Anna V.R. et al. // Inorg. Chim. Acta. 2010. V. 363. № 10. P. 2287. https://doi.org/10.1016/j.ica.2010.03.052
- Ather A.Q., Tahir M.N., Khan M.A. et al. // Acta. Crystallogr., Sect. E: Struct. Rep. Online. 2010. V. E66. № 10. P. o2493. https://doi.org/10.1107/S1600536810034756
- Dai F.-R., Ye H.-Y., Li B. et al. // Dalton Trans. 2009. № 40. P. 8696. https://doi.org/10.1039/b908798b
- Guetzoyan L., Ingham R.J., Nikbin N. et al. // Med. Chem. Commun. 2014. V. 5. № 4. P. 540. https://doi.org/10.1039/C4MD00007B
- Süküroglu M., Ergün B.Ç., Ünlü S. et al. // Arch. Pharm. Res. 2005. V. 28. № 5. P. 509. https://doi.org/10.1007/BF02977751
- Rissanen K., Valkonen J., Kokkonen P. et al. // Acta. Chem. Scand. 1987. V. 41a. P. 299. https://doi.org/10.3891/acta.chem.scand.41a-0299
- Devereux M., McCann M., Casey M.T. et al. // J. Chem. Soc., Dalton Trans. 1995. V. 77. № 5. P. 771. https://doi.org/10.1039/DT9950000771
- Bruker Apex3 software suite: Apex3, SADABS-2016/2 and SAINT, version 2018.7-2; Bruker AXS Inc.: Madison, WI. 2017.
- Bruker AXS Inc., APEX2 (Version 1.08), SAINT (Version 7.03), and SADABS (Version 2.11). Bruker Advanced X-ray Solutions. 2004.
- Sheldrick G.M. // Acta Crystallogr, A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- Costa P.J. // Phys. Sci. Rev. 2017. V. 2. № 11. P. 20170136. https://doi.org/10.1515/psr-2017-0136
- Cavallo G., Metrangolo P., Milani R. et al. // Chem. Rev. 2016. V. 116. № 4. P. 2478. https://doi.org/10.1021/acs.chemrev.5b00484
- Kessissoglou D.P., Kirk M.L., Lah M.S. et al. // Inorg. Chem. 1992. V. 31. № 26. P. 5424. https://doi.org/10.1021/ic00052a018
- Zhao P.-Z., Yan F.-M., Wang J.-G. // Acta Crystallogr., Sect. E: Struct. Rep. Online. 2009. V. 65. № 2. P. M194. https://doi.org/10.1107/S1600536809000981
- Xiang D.F., Duan C.Y., Tan X.S. et al. // J. Chem. Soc., Dalton Trans. 1998. № 7. P. 1201. https://doi.org/10.1039/a707433f
- Tan X.S., Tang W.X., Chen J. et al. // Polyhedron. 1996. V. 15. № 12. P. 2087. https://doi.org/10.1016/0277-5387(95)00440-8
- Tan X.S., Sun J., Hu C.H. et al. // Inorg. Chim. Acta. 1997. V. 257. № 2. P. 203. https://doi.org/10.1016/S0020-1693(96)05476-X
- Lutter J.C., Boron T.T., Chadwick K.E. et al. // Polyhedron. 2021. V. 202. P. 115190. https://doi.org/10.1016/j.poly.2021.115190
- Wang G.-F., Sun S.-W., Bao W.-J. // Crystallogr. Rep. 2021. V. 66. № 7. P. 1247. https://doi.org/10.1134/S1063774521070191
- Seth P., Figuerola A., Jover J. et al. // Inorg. Chem. 2014. V. 53. № 17. P. 9296. https://doi.org/10.1021/ic501425x
- Gupta M.P., Ashok J. // Curr. Sci. 1978. V. 47. № 15. P. 534.
- Chu H.A., Sackett H., Babcock G.T. // Biochemistry. 2000. V. 39. № 47. P. 14371. https://doi.org/10.1021/bi001751g
- Kishore K., Nagarajan R. // Fire. Saf. J. 1989. V. 15. № 5. P. 391. https://doi.org/10.1016/0379-7112(89)90028-3
- Alambar E.S., Carlisle J.A., Carlisle G.O. // Inorg. Chim. Acta. 1983. V. 78. P. L65. https://doi.org/10.1016/S0020-1693(00)86479-8
Дополнительные файлы
