Effect of Torsional Deformations on the Spin States of Carbon Nanotubes with Metallic Conductivity
- 作者: D’yachkov E.P.1, Lomakin N.A.1, D’yackov P.N.1
-
隶属关系:
- Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- 期: 卷 68, 编号 7 (2023)
- 页面: 946-951
- 栏目: ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ
- URL: https://innoscience.ru/0044-457X/article/view/665228
- DOI: https://doi.org/10.31857/S0044457X2370023X
- EDN: https://elibrary.ru/RIRENY
- ID: 665228
如何引用文章
详细
The formation of spin levels upon torsional deformation of nonchiral (n, n) carbon nanotubes has been theoretically studied. In the absence of mechanical deformation, nanotubes have inversion symmetry and a metallic band structure with a spin-degenerate state near the Fermi level. The twisting deformation breaks the inversion symmetry, so that the tube becomes chiral. As a result, due to the Rashba effect, the degeneracy of the levels is completely lifted and spin gaps are formed between the bands of predominantly α and β types.
作者简介
E. D’yachkov
Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: p_dyachkov@rambler.ru
119991, Moscow, Russia
N. Lomakin
Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: p_dyachkov@rambler.ru
119991, Moscow, Russia
P. D’yackov
Institute of General and Inorganic Chemistry, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: p_dyachkov@rambler.ru
119991, Moscow, Russia
参考
- Ando T. // J. Phys. Soc. Jpn. 2000. V. 69. P. 1757. https://doi.org/10.1143/JPSJ.69.1757
- Chico L., Lopez-Sancho M.P., Munoz M.C. // Phys. Rev. Lett. 2004. V. 93. P. 176402. https://doi.org/10.1103/PhysRevLett.93.176402
- Huertas-Hernando D., Guinea F., Brataas A. // Phys. Rev. B. 2006. V. 74. P. 155426. https://doi.org/10.1103/PhysRevB.74.155426
- Kuemmeth F., Ilani S., Ralph D. et al. // Nature. 2008. V. 452. P. 448. https://doi.org/10.1038/ncomms2584
- Ilani S., McEuen P.L. // Annu. Rev. Condens. Matter. Phys. 2010. V. 1. P. 1. https://doi.org/10.1146/annurev-conmatphys-070909-103928
- Jhang S.H., Marganska M., Skuorsky Y. et al. // Phys. Rev. B. 2010. V. 82. P. 041404. https://doi.org/10.1103/PhysRevB.82.041404
- Jespersen T., Grove-Rusmussen K., Paaske J. // Nature Physics. 2011. V. 7. P. 348. https://doi.org/10.1038/nphys1880
- Steele G.A., Pei F., Laird E.A. et al. // Nature Commun. 2013. V. 4. P. 1573. https://doi.org/10.1038/ncomms2584
- Wunsch B. // Phys. Rev. B. 2009. V. 79. P. 235408. https://doi.org/10.1103/PhysRevB.79.235408
- Merchant C., Markovic N. // Phys. Rev. Lett. 2008. V. 100. P. 156601. https://doi.org/10.1103/PhysRevLett.100.156601
- Wang K.Y., Blackburn A.M., Wang H.F. et al. // Appl. Phys. Lett. 2013. V. 102. P. 093508. https://doi.org/10.1063/1.4794535
- Guimaraes F.S.M., Kirwan D.F., Costa A.T. et al. // Phys. Rev. B. 2010. V. 81. P. 153408. https://doi.org/10.1103/PhysRevB.81.153408
- Flensberg K., Marcus C. // Phys. Rev. B. 2010. V. 81. P. 195418. https://doi.org/10.1103/PhysRevB.81.195418
- Gunlycke D., Jefferson J.H., Bailey S.W.D et al. // J. Phys.: Condens. Matter. 2006. V. 18. P. S843. https://doi.org/10.1088/0953-8984/18/21/S10
- Hueso L.E., Pruneda J.M., Ferrari V. // Nature. 2007. V. 445. P. 410. https://doi.org/10.1038/nature05507
- Galland C., Imamoglu A. // Phys. Rev. Lett. 2008. V. 101. P. 157404. https://doi.org/10.1103/PhysRevLett.101.157404
- Bulaev D., Trauzettel B., Loss D. // Phys. Rev. B. 2008. V. 77. P. 235301. https://doi.org/10.1103/PhysRevB.77.235301
- Laird E.A., Pei F., Kouwenhoven L.P. // Nat. Nanotechnol. 2013. V. 8. P. 565. https://doi.org/10.1038/nnano.2013.140
- Schulz A., De Martino A., Egger R. // Phys. Rev. B. 2010. V. 82. P. 033407. https://doi.org/10.1103/PhysRevB.82.033407
- Galpin M.R., Jayatilaka F.W., Logan D.E. // Phys. Rev. B. 2010. V. 81. P. 075437. https://doi.org/10.1103/PhysRevB.81.075437
- Lim J., Lopez R., Aguado R. // Phys. Rev. Lett. 2011. V. 107. P. 196801. https://doi.org/10.1103/PhysRevLett.107.196801
- Palyi A., Struck P., Rudner M. et al. // Phys. Rev. Lett. 2012. V. 108. P. 206811. https://doi.org/10.1103/PhysRevLett.108.206811
- Ohm C., Stampfer C., Splettstoesser J. et al. // Appl. Phys. Lett. 2012. V. 100. P. 143103. https://doi.org/10.1063/1.3698395
- Alam K.M., Pramanik S. // Adv. Funct. Mater. 2015. V. 25. P. 3210. https://doi.org/10.1002/adfm.201500494
- Alam K.M. Pramanik S. // Nanoscale. 2017. V. 9. P. 5155. https://doi.org/10.1039/C6NR09395G
- Rahman Md.W., Alam K.M., Pramanik S. // ACS Omega. 2018. V. 3. P. 17108. https://doi.org/10.1021/acsomega.8b02237
- Rahman Md.W., Firouzeh S., Mujica V. et al. // ACS Nano. 2020. V. 14. P. 3389. https://doi.org/10.1021/acsnano.9b09267
- Yang S.H. // Appl. Phys. Lett. 2021. V. 16. P. 120502. https://doi.org/10.1063/5.0039147
- Yang S.H., Naaman R., Paltiel Y. et al. // Nat. Rev. Phys. 2021. V. 3. P. 328. https://doi.org/10.1038/s42254-021-00302-9
- Michaeli K., Kantor-Uriel N., Naamanm R. et al. // Chem. Soc. Rev. 2016. V. 45. P. 6478. https://doi.org/10.1039/C6CS00369A
- Naaman R., Waldeck D.H. // Annu. Rev. Phys. Chem. 2015. V. 66. P. 263. https://doi.org/10.1146/annurev-physchem-040214-121554
- Joselevich E. // ChemPhysChem. 2006. V. 7. P. 1405. https://doi.org/10.1002/cphc.200600206
- D’yachkov P.N. // Russ. J. Inorg. Chem. 2021. V. 66. P. 852. https://doi.org/10.1134/S0036023621110048
- D’yachkov P.N. // Appl. Func. Mater. 2022. V. 2. P. 35. https://doi.org/10.35745/afm2022v02.02.0006
- D’yachkov P.N., Makaev D.V. // Phys. Rev. B. 2007. V. 76. P. 195411. https://doi.org/10.1103/PhysRevB.76.195411
- D’yachkov P.N., Makaev D.V. // Int. J. Quantum Chem. 2016. V. 116. P. 316. https://doi.org/10.1002/qua.25030
- D’yachkov P.N. // Quantum Chemistry of Nanotubes: Electronic Cylindrical Waves. London: Taylor and Francis, 2019. 212 p.
- Дьячков П.Н. // Углеродные нанотрубки: строение, свойства, применения. М.: БИНОМ. Лаборатория знаний, 2006. 203 с.
- Cohen-Karni T., Segev L., Srur-Lavi O. et al. // Nature Nanotechnol. 2006. V. 1. P. 36. https://doi.org/10.1038/nnano.2007.179
- Changa T. // Appl. Phys. Lett. 2007. V. 90. P. 201910. https://doi.org/10.1063/1.2739325
- Zhang D.-B., James R.D., Dumitrică T. // Phys. Rev. B. 2009. V. 80. P. 155418. https://doi.org/10.1103/PhysRevB.80.115418
- Bercioux D., Lucignano P. // Rep. Prog. Phys. 2015. V. 78. P. 106001. https://https://doi.org/10.1088/0034-4885/78/10/106001
- Koo H.C., Nitta J., Frolov S. M. et al. // Nat. Mater. 2015. V. 14. P. 871. https://doi.org/10.1038/nmat4360
- Koo H.C., Kim S.B., Kim H. et al. // Adv. Mater. 2020. V. 32. P. 2002117. https://doi.org/10.1002/adma.202002117
- Рашба E.И., Шека В.И. // Физ. тверд. тела. 1959. Т. 2. С. 162.
- D’yachkov P.N., D’yachkov E.P. // Appl. Phys. Lett. 2022. V. 120. P. 173101. https://doi.org/10.1063/5.0086902
- D’yachkov P.N. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1606. https://doi.org/10.1134/S0036023622600678
- Martin W.C. Notional Bureau of Standards A. Phys. Chem. 1971. V. 7SA.
