Влияние растворителя на гидропревращения терефталевой кислоты на оксидах молибдена и вольфрама

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Катализаторы на основе оксидов молибдена и вольфрама получены in situ из карбонилов соответствующих металлов в процессе гидропревращений терефталевой кислоты и исследованы методами рентгенофазового анализа и рентгеновской фотоэлектронной спектроскопии. Для проведения гидропревращений выбраны различные растворители, присутствие которых по-разному влияет на формирование катализатора и его активных центров, а также на превращения терефталевой кислоты. Среди неполярных растворителей выбран додекан, как один из наиболее часто используемых растворителей для деоксигенации, и тетралин — растворитель, обладающий H-донорными свойствами. Среди полярных растворителей выбран H-донорный растворитель этиленгликоль и вода — растворитель, наиболее соответствующий принципам «зеленой химии». Конверсия терефталевой кислоты при 350°C, начальном давлении водорода 5 МПа при использовании обоих катализаторов и проведении реакции в течение 6 ч превышает 85% во всех растворителях. Наибольшая селективность по ароматическим углеводородам достигается при использовании тетралина в качестве растворителя и WOx в качестве катализатора и составляет 97% при конверсии терефталевой кислоты 99%. При использовании воды в качестве растворителя наблюдается наименьшая селективность по ароматическим углеводородам (45–48%) как в присутствии MoOx, так и в присутствии WOx при конверсии терефталевой кислоты 85%.

Полный текст

Доступ закрыт

Об авторах

Мариям Мухтарова

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Автор, ответственный за переписку.
Email: vinnikova@ips.ac.ru
ORCID iD: 0000-0003-1215-6136
Россия, Москва

Мария Андреевна Голубева

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: vinnikova@ips.ac.ru
ORCID iD: 0000-0002-3741-7833

к.х.н.

Россия, Москва

Список литературы

  1. Luttrell W. E., Hester R. L. Terephthalic acid // J. Chem. Health Saf. 2016. V. 23. P. 49–52. https://doi.org/10.1016/j.jchas.2016.09.005
  2. Nisticò R. Polyethylene terephthalate (PET) in the packaging industry // Polym. Test. 2020. V. 90. ID 106707. https://doi.org/10.1016/j.polymertesting.2020.106707
  3. Wang N., Liu J., Liu S., Liu G. Hydrodeoxygenation of oxygen-containing aromatic plastic wastes into cycloalkanes and aromatics // ChemPlusChem. 2024. V. 89. ID e202400190. https://doi.org/10.1002/cplu.202400190
  4. Golubeva M. A., Maximov A. L. Transition metal compounds in the hydrodeoxygenation of biomass derivatives // Renewable Sustainable Energy Rev. 2025. V. 210. ID 115153. https://doi.org/10.1016/j.rser.2024.115153
  5. Yan Z., Fan J., Zuo Z., Li Z., Zhang J. NH3 adsorption on the Lewis and Bronsted acid sites of MoO 3 (010) surface: A cluster DFT study // Appl. Surf. Sci. 2014. V. 288. P. 690–694. https://doi.org/10.1016/j.apsusc.2013.10.105
  6. Jiang S., Ji N., Diao X., Li H., Rong Y., Lei Y., Yu Z. Vacancy engineering in transition metal sulfide and oxide catalysts for hydrodeoxygenation of lignin-derived oxygenates // ChemSusChem. 2021. V. 14. P. 4377–4396. https://doi.org/10.1002/cssc.202101362
  7. Zhang X., Tang J., Zhang Q., Liu Q., Li Y., Chen L., Wang C., Ma L. Hydrodeoxygenation of lignin-derived phenolic compounds into aromatic hydrocarbons under low hydrogen pressure using molybdenum oxide as catalyst // Catal. Today. 2019. V. 319. P. 41–47. https://doi.org/10.1016/j.cattod.2018.03.068
  8. Mukhtarova M., Golubeva M., Sadovnikov A., Maximov A. Guaiacol to aromatics: Efficient transformation over in situ-generated molybdenum and tungsten oxides // Catalysts. 2023. V. 13. ID 263. https://doi.org/10.3390/catal13020263
  9. Mukhtarova M., Golubeva M. A., Sadovnikov A. A., Maximov A. L. Selective hydroprocessing of diphenyl ether into benzene over in situ generated MoO x and WO x // Appl. Catal. B. 2024. V. 351. ID 123999. https://doi.org/10.1016/j.apcatb.2024.123999
  10. Choi J. G., Thompson L. T. XPS study of as-prepared and reduced molybdenum oxides // Appl. Surf. Sci. 1996. V. 93. P. 143−149. https://doi.org/10.1016/0169-4332(95)00317-7
  11. Zhang X., Tang J., Zhang Q., Liu Q., Li Y., Chen L., Wang C., Ma L. Hydrodeoxygenation of lignin-derived phenolic compounds into aromatic hydrocarbons under low hydrogen pressure using molybdenum oxide as catalyst // Catal. Today. 2019. V. 319. P. 41–47. https://doi.org/10.1016/j.cattod.2018.03.068
  12. Tan T., Wang W., Zhang K., Zhan Z., Deng W., Zhang Q., Wang Y. Upcycling plastic wastes into value-added products by heterogeneous catalysis // ChemSusChem. 2022. V. 15. ID e202200522. https://doi.org/10.1002/cssc.202200522
  13. Xin H., Guo K., Yang H., Hu C. Production of high-grade diesel from palmitic acid over activated carbon-supported nickel phosphide catalysts // Appl. Catal. B. 2016. V. 187. P. 375–385. https://doi.org/10.1016/j.apcatb.2016.01.051
  14. Moodley D. J., Van Schalkwyk C., Spamer A., Botha J. M., Datye A. K. Coke formation on WO 3 /SiO 2 metathesis catalysts // Appl. Catal. A. 2007. V. 318. P. 155–159. https://doi.org/10.1016/j.apcata.2006.10.053

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Дифрактограммы MoOx и WOx, полученных in situ в тетралине и этиленгликоле

Скачать (215KB)
3. Рис. 2. Конверсия терефталевой кислоты и селективность по продуктам реакции в различных растворителях в присутствии: а — MoOx, б — WOx

Скачать (204KB)

© Российская академия наук, 2024