ТБ-ИЗАТЕСТ: способ дифференциальной диагностики Mycobacterium tuberculosis методом LAMP
- Авторы: Ширшиков Ф.В.1,2, Беспятых Ю.А.1,2
-
Учреждения:
- ФГБУ “Федеральный научно-клинический центр физико-химической медицины имени академика Ю.М. Лопухина” ФМБА России,
- ФГБОУ ВО “Российский химико-технологический университет имени Д.И. Менделеева”
- Выпуск: Том 49, № 6 (2023)
- Страницы: 627-640
- Раздел: Статьи
- URL: https://innoscience.ru/0132-3423/article/view/670548
- DOI: https://doi.org/10.31857/S0132342323060131
- EDN: https://elibrary.ru/EYSSZB
- ID: 670548
Цитировать
Аннотация
Чахотка, белая чума, туберкулез… Лишь относительно недавно это заболевание перестало быть абсолютно смертельным приговором для инфицированных людей, однако проблемы распространения и диагностики этого заболевания по-прежнему актуальны. В данной работе представлены результаты разработки новой тест-системы ТБ-ИЗАТЕСТ для дифференциальной диагностики вида Mycobacterium tuberculosis от нетуберкулезных микобактерий по видоспецифичному гену rv2341 с использованием метода петлевой изотермической амплификации (LAMP). Тест-система применима для количественного анализа целевой геномной ДНК и позволяет выявлять десятикратные различия в концентрации. Впервые приводятся результаты оптимизации амплификации с помощью двухстадийного протокола на основе метода ортогональных матриц Тагути. Предложена теоретическая интерпретация высоких значений эффективности амплификации, наблюдаемых в реакции LAMP. Предел детекции разработанной тест-системы составляет 40 геном-эквивалентов на реакцию, а стадия амплификации требует 15 мин. По совокупности характеристик тест-система ТБ-ИЗАТЕСТ превосходит все известные способы идентификации M. tuberculosis методом LAMP.
Ключевые слова
Об авторах
Ф. В. Ширшиков
ФГБУ “Федеральный научно-клинический центр физико-химической медицины имени академика Ю.М. Лопухина” ФМБА России,; ФГБОУ ВО “Российский химико-технологический университет имени Д.И. Менделеева”
Автор, ответственный за переписку.
Email: shrshkv@ya.ru
Россия, 119435, Москва, ул. Малая Пироговская, 1А; Россия, 125047, Москва, Миусская пл., 9
Ю. А. Беспятых
ФГБУ “Федеральный научно-клинический центр физико-химической медицины имени академика Ю.М. Лопухина” ФМБА России,; ФГБОУ ВО “Российский химико-технологический университет имени Д.И. Менделеева”
Email: shrshkv@ya.ru
Россия, 119435, Москва, ул. Малая Пироговская, 1А; Россия, 125047, Москва, Миусская пл., 9
Список литературы
- Pai M., Behr M.A., Dowdy D., Dheda K., Divangahi M., Boehme C.C., Ginsberg A., Swaminathan S., Spigelman M., Getahun H., Menzies D., Raviglione M. // Nat. Rev. Dis. Prim. 2016. V. 2. P. 16076. https://doi.org/10.1038/nrdp.2016.76
- Bhat Z.S., Rather M.A., Maqbool M., Ahmad Z. // Biomed. Pharmacother. 2018. V. 103. P. 1733–1747. https://doi.org/10.1016/j.biopha.2018.04.176
- Chakaya J., Petersen E., Nantanda R., Mungai B.N., Migliori G.B., Amanullah F., Lungu P., Ntoumi F., Kumarasamy N., Maeurer M., Zumla A. // Int. J. Infect. Dis. 2022. V. 124. P. S26–S29. https://doi.org/10.1016/j.ijid.2022.03.011
- Bagcchi S. // The Lancet Microbe. 2023. V. 4. P. e20. https://doi.org/10.1016/S2666-5247(22)00359-7
- Achtman M. // Annu. Rev. Microbiol. 2008. V. 62. P. 53–70. https://doi.org/10.1146/annurev.micro.62.081307.162832
- Riojas M.A., McGough K.J., Rider-Riojas C.J., Rastogi N., Hazbón M.H. // Int. J. Syst. Evol. Microbiol. 2018. V. 68. P. 324–332. https://doi.org/10.1099/ijsem.0.002507
- Gupta R.S., Lo B., Son J. // Front Microbiol. 2018. V. 9. P. 67. https://doi.org/10.3389/fmicb.2018.00067
- Meehan C.J., Barco R.A., Loh Y.E., Cogneau S., Rigouts L. // Int. J. Syst. Evol. Microbiol. 2021. V. 71. P. 004922. https://doi.org/10.1099/ijsem.0.004922
- Johansen M.D., Herrmann J.-L., Kremer L. // Nat. Rev. Microbiol. 2020. V. 18. P. 392–407. https://doi.org/10.1038/s41579-020-0331-1
- Galagan J.E. // Nat. Rev. Genet. 2014. V. 15. P. 307–320. https://doi.org/10.1038/nrg3664
- Gagneux S. // Nat. Rev. Microbiol. 2018. V. 16. P. 202–213. https://doi.org/10.1038/nrmicro.2018.8
- Merker M., Rasigade J.-P., Barbier M., Cox H., Feuerriegel S., Kohl T.A., Shitikov E., Klaos K., Gaudin C., Antoine R., Diel R., Borrell S., Gagneux S., Nikolayevskyy V., Andres S., Crudu V., Supply P., Niemann S., Wirth T. // Nat. Commun. 2022. V. 13. P. 5105. https://doi.org/10.1038/s41467-022-32455-1
- Chakravorty S., Simmons A.M., Rowneki M., Parmar H., Cao Y., Ryan J., Banada P.P., Deshpande S., Shenai S., Gall A., Glass J., Krieswirth B., Schumacher S.G., Nabeta P., Tukvadze N., Rodrigues C., Skrahina A., Tagliani E., Cirillo D.M., Davidow A., Denkinger C.M., Persing D., Kwiatkowski R., Jones M., Alland D. // mBio. 2017. V. 8. P. e00812-17. https://doi.org/10.1128/mBio.00812-17
- World Health Organization, 2021. WHO Consolidated Guidelines on Tuberculosis. Module 3: Diagnosis. Rapid Diagnostics for Tuberculosis Detection, 2021 Update. Geneva: World Health Organization, 2021. https://www.who.int/publications/i/item/9789240029415
- Gryadunov D.A., Shaskolskiy B.L., Nasedkina T.V., Rubina A.Y., Zasedatelev A.S. // Acta Naturae. 2018. V. 10. P. 4–18. https://doi.org/10.32607/20758251-2018-10-4-4-18
- Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., Hase T. // Nucleic Acids Res. 2000. V. 28. P. e63. https://doi.org/10.1093/nar/28.12.e63
- Tomita N., Mori Y., Kanda H., Notomi T. // Nat. Protoc. 2008. V. 3. P. 877–882. https://doi.org/10.1038/nprot.2008.57
- Kaboev O.K., Luchkina L.A., Akhmedov A.T., Bekker M.L. // J. Bacteriol. 1981. V. 145. P. 21–26. https://doi.org/10.1128/jb.145.1.21-26.1981
- Tanner N.A., Evans T.C. // Curr. Protoc. Mol. Biol. 2014. V. 105. P. 15.14.1–15.14.14. https://doi.org/10.1002/0471142727.mb1514s105
- Nagamine K., Hase T., Notomi T. // Mol. Cell. Probes. 2002. V. 16. P. 223–229. https://doi.org/10.1006/mcpr.2002.0415
- Yonekawa T., Watanabe H., Hosaka N., Semba S., Shoji A., Sato M., Hamasaki M., Yuki S., Sano S., Segawa Y., Notomi T. // Sci. Rep. 2020. V. 10. P. 5409. https://doi.org/10.1038/s41598-020-62109-5
- Moore K.J.M., Cahill J., Aidelberg G., Aronoff R., Bektaş A., Bezdan D., Butler D.J., Chittur S.V., Codyre M., Federici F., Tanner N.A., Tighe S.W., True R., Ware S.B., Wyllie A.L., Afshin E.E., Bendesky A., Chang C.B., Dela Rosa R., Elhaik E., Erickson D., Goldsborough A.S., Grills G., Hadasch K., Hayden A., Her S.Y., Karl J.A., Kim C.H., Kriegel A.J., Kunstman T., Landau Z., Land K., Langhorst B.W., Lindner A.B., Mayer B.E., McLaughlin L.A., McLaughlin M.T., Molloy J., Mozsary C., Nadler J.L., D’Silva M., Ng D., O’Connor D.H., Ongerth J.E., Osuolale O., Pinharanda A., Plenker D., Ranjan R., Rosbash M., Rotem A., Segarra J., Schürer S., Sherrill-Mix S., Solo-Gabriele H., To S., Vogt M.C., Yu A.D., Mason C.E., The gLAMP Consortium // J. Biomol. Tech. 2021. V. 32. P. 228–275. https://doi.org/10.7171/jbt.21-3203-017
- Shirshikov F.V., Bespyatykh J.A. // Russ. J. Bioorg. Chem. 2022. V. 48. P. 1159–1174. https://doi.org/10.1134/S106816202206022X
- Iwamoto T., Sonobe T., Hayashi K. // J. Clin. Microbiol. 2003. V. 41. P. 2616–2622. https://doi.org/10.1128/JCM.41.6.2616-2622.2003
- Boehme C.C., Nabeta P., Henostroza G., Raqib R., Rahim Z., Gerhardt M., Sanga E., Hoelscher M., Notomi T., Hase T., Perkins M.D. // J. Clin. Microbiol. 2007. V. 45. P. 1936–1940. https://doi.org/10.1128/JCM.02352-06
- Rakotosamimanana N., Lapierre S.G., Raharimanga V., Raherison M.S., Knoblauch A.M., Raherinandrasana A.H., Rakotoson A., Rakotonirina J., Rasolofo V. // BMC Infect. Dis. 2019. V. 19. P. 542. https://doi.org/10.1186/s12879-019-4198-6
- World Health Organization, 2016. The Use of Loop-Mediated Isothermal Amplification (TB-LAMP) for the Diagnosis of Pulmonary Tuberculosis. Geneva: World Health Organization, 2016. https://apps.who.int/iris/handle/10665/249154
- Gray C.M., Katamba A., Narang P., Giraldo J., Zamudio C., Joloba M., Narang R., Paramasivan C.N., Hillemann D., Nabeta P., Amisano D., Alland D., Cobelens F., Boehme C.C. // J. Clin. Microbiol. 2016. V. 54. P. 1984–1991. https://doi.org/10.1128/JCM.03036-15
- García-Basteiro A.L., DiNardo A., Saavedra B., Silva D.R., Palmero D., Gegia M., Migliori G.B., Duarte R., Mambuque E., Centis R., Cuevas L.E., Izco S., Theron G. // Pulmonology. 2018. V. 24. P. 73–85. https://doi.org/10.1016/j.rppnen.2017.12.002
- Neonakis I.K., Spandidos D.A., Petinaki E. // Eur. J. Clin. Microbiol. Infect. Dis. 2011. V. 30. P. 937–942. https://doi.org/10.1007/s10096-011-1195-0
- Yuan L., Li Y., Wang M., Ke Z., Xu W. // J. Infect. Chemother. 2014. V. 20. P. 86–92. https://doi.org/10.1016/j.jiac.2013.07.003
- Nagai K., Horita N., Yamamoto M., Tsukahara T., Nagakura H., Tashiro K., Shibata Y., Watanabe H., Nakashima K., Ushio R., Ikeda M., Narita A., Kanai A., Sato T., Kaneko T. // Sci. Rep. 2016. V. 6. P. 39090. https://doi.org/10.1038/srep39090
- Nliwasa M., MacPherson P., Chisala P., Kamdolozi M., Khundi M., Kaswaswa K., Mwapasa M., Msefula C., Sohn H., Flach C., Corbett E.L. // PLoS One. 2016. V. 11. P. e0155101. https://doi.org/10.1371/journal.pone.0155101
- Yu G., Shen Y., Zhong F., Ye B., Yang J., Chen G. // PLoS One. 2018. V. 13. P. e0199290. https://doi.org/10.1371/journal.pone.0199290
- Lok K.H., Benjamin W.H., Kimerling M.E., Pruitt V., Lathan M., Razeq J., Hooper N., Cronin W., Dunlap N.E. // Emerg. Infect. Dis. 2002. V. 8. P. 1310–1313. https://doi.org/10.3201/eid0811.020291
- Thierry D., Brisson-Noël A., Vincent-Lévy-Frébault V., Nguyen S., Guesdon J.L., Gicquel B. // J. Clin. Microbiol. 1990. V. 28. P. 2668–2673. https://doi.org/10.1128/jcm.28.12.2668-2673.1990
- Kechin A., Oscorbin I., Cherednichenko A., Khrapov E., Schwartz Y., Stavitskaya N., Filipenko M. // Arch. Microbiol. 2023. V. 205. P. 71. https://doi.org/10.1007/s00203-023-03410-5
- Alonso H., Samper S., Martín C., Otal I. // BMC Genomics. 2013. V. 14. P. 422. https://doi.org/10.1186/1471-2164-14-422
- Zhou L., Ma C., Xiao T., Li M., Liu H., Zhao X., Wan K., Wang R. // Front. Microbiol. 2019. V. 10. P. 1–10. https://doi.org/10.3389/fmicb.2019.01887
- Goig G.A., Torres-Puente M., Mariner-Llicer C., Villamayor L.M., Chiner-Oms Á., Gil-Brusola A., Borrás R., Comas Espadas I. // Bioinformatics. 2019. V. 36. P. 985–989. https://doi.org/10.1093/bioinformatics/btz729
- Shirshikov F. V., Pekov Y.A., Miroshnikov K.A. // PeerJ. 2019. V. 7. P. e6801. https://doi.org/10.7717/peerj.6801
- Abramovitch R.B., Rohde K.H., Hsu F.-F., Russell D.G. // Mol. Microbiol. 2011. V. 80. P. 678–694. https://doi.org/10.1111/j.1365-2958.2011.07601.x
- Gupta A. // FEMS Microbiol. Lett. 2009. V. 290. P. 45–53. https://doi.org/10.1111/j.1574-6968.2008.01400.x
- Morero M., Ramirez M.R., Oyhenart J. // Vet. Parasitol. 2021. V. 295. P. 109462. https://doi.org/10.1016/j.vetpar.2021.109462
- Shoushtari M., Salehi-Vaziri M., Roohvand F., Arashkia A., Jalali T., Azadmanesh K. // Biotechnol. Lett. 2021. V. 43. P. 2149–2160. https://doi.org/10.1007/s10529-021-03175-1
- Wang Y., Li J., Li S., Zhu X., Wang X., Huang J., Yang X., Tai J. // Microchim. Acta. 2021. V. 188. P. 347. https://doi.org/10.1007/s00604-021-04985-w
- Schneider L., Blakely H., Tripathi A. // Electrophoresis. 2019. V. 40. P. 2706–2717. https://doi.org/10.1002/elps.201900167
- Bio-Rad Laboratories Inc., 2006. Real-Time PCR Applications Guide. Bulletin 5279. P. 4–6. https://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_5279.pdf
- Ruijter J.M., Barnewall R.J., Marsh I.B., Szentirmay A.N., Quinn J.C., van Houdt R., Gunst Q.D., van den Hoff M.J.B. // Clin. Chem. 2021. V. 67. P. 829–842. https://doi.org/10.1093/clinchem/hvab052
- von Hippel P.H., Johnson N.P., Marcus A.H. // Biopolymers. 2013. V. 99. P. 923–954. https://doi.org/10.1002/bip.22347
- Cousins D.V., Bastida R., Cataldi A., Quse V., Redrobe S., Dow S., Duignan P., Murray A., Dupont C., Ahmed N., Collins D.M., Butler W.R., Dawson D., Rodríguez D., Loureiro J., Romano M.I., Alito A., Zumarraga M., Bernardelli A. // Int. J. Syst. Evol. Microbiol. 2003. V. 53. P. 1305–1314. https://doi.org/10.1099/ijs.0.02401-0
- Alexander K.A., Laver P.N., Michel A.L., Williams M., van Helden P.D., Warren R.M., Gey van Pittius N.C. // Emerg. Infect. Dis. 2010. V. 16. P. 1296–1299. https://doi.org/10.3201/eid1608.100314
- Esteban J., Muñoz-Egea M.C. // Tuberculosis and Nontuberculous Mycobacterial Infections / Ed. David Schlossberg. Washington, DC: ASM Press, 2017. P. 754. https://doi.org/10.1128/microbiolspec.TNMI7-0021-2016
- Ngabonziza J.C.S., Loiseau C., Marceau M., Jouet A., Menardo F., Tzfadia O., Antoine R., Niyigena E.B., Mulders W., Fissette K., Diels M., Gaudin C., Duthoy S., Ssengooba W., André E., Kaswa M.K., Habimana Y.M., Brites D., Affolabi D., Mazarati J.B., de Jong B.C., Rigouts L., Gagneux S., Meehan C.J., Supply P. // Nat. Commun. 2020. V. 11. P. 2917. https://doi.org/10.1038/s41467-020-16626-6
- Panda A., Drancourt M., Tuller T., Pontarotti P. // Sci. Rep. 2018. V. 8. P. 14817. https://doi.org/10.1038/s41598-018-33261-w
- Eldholm V., Balloux F. // Trends Microbiol. 2016. V. 24. P. 637–648. https://doi.org/10.1016/j.tim.2016.03.007
- Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. // J. Mol. Biol. 1990. V. 215. P. 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., Jensen L.J., von Mering C. // Nucleic Acids Res. 2019. V. 47. P. D607–D613. https://doi.org/10.1093/nar/gky1131
- Chitale P., Lemenze A.D., Fogarty E.C., Shah A., Grady C., Odom-Mabey A.R., Johnson W.E., Yang J.H., Eren A.M., Brosch R., Kumar P., Alland D. // Nat. Commun. 2022. V. 13. P. 7068. https://doi.org/10.1038/s41467-022-34853-x
- Lu J., Johnston A., Berichon P., Ru K., Korbie D., Trau M. // Sci. Rep. 2017. V. 7. P. 41328. https://doi.org/10.1038/srep41328
- Dwight Z., Palais R., Wittwer C.T. // Bioinformatics. 2011. V. 27. P. 1019–1020. https://doi.org/10.1093/bioinformatics/btr065
- Zuker M. // Nucleic Acids Res. 2003. V. 31. P. 3406–3415. https://doi.org/10.1093/nar/gkg595
- Kerpedjiev P., Hammer S., Hofacker I.L. // Bioinformatics. 2015. V. 31. P. 3377–3379. https://doi.org/10.1093/bioinformatics/btv372
- Popenda M., Szachniuk M., Antczak M., Purzycka K.J., Lukasiak P., Bartol N., Blazewicz J., Adamiak R.W. // Nucleic Acids Res. 2012. V. 40. P. e112. https://doi.org/10.1093/nar/gks339
- Sehnal D., Bittrich S., Deshpande M., Svobodová R., Berka K., Bazgier V., Velankar S., Burley S.K., Koča J., Rose A.S. // Nucleic Acids Res. 2021. V. 49. P. W431–W437. https://doi.org/10.1093/nar/gkab314
- Shitikov E.A., Bespyatykh J.A., Ischenko D.S., Alexeev D.G., Karpova I.Y., Kostryukova E.S., Isaeva Y.D., Nosova E.Y., Mokrousov I.V., Vyazovaya A.A., Narvs-kaya O.V., Vishnevsky B.I., Otten T.F., Zhuravlev V.Iu., Yablonsky P.K., Ilina E.N., Govorun V.M. // PLoS One. 2014. V. 9. P. e84971. https://doi.org/10.1371/journal.pone.0084971
- Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., Vandesompele J., Wittwer C.T. // Clin. Chem. 2009. V. 55. P. 611–622. https://doi.org/10.1373/clinchem.2008.112797
Дополнительные файлы
