Characteristics of dynamic changes in proteomic composition of cervicovaginal fluid in cervical diseases associated with HPV infection


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To develop a non-invasive approach to the differential diagnosis of HPV-associated cervical diseases in patients of reproductive age with minor lesions of the cervical epithelium based on a proteomic analysis of cervicovaginal fluid (CVF). Materials and methods. Samples of CVF were obtained from seven patients aged 26-36 years (31 ± 4) with minor HPV-associated cervical lesions (ASCUS, LSIL) during the dynamic observation (0, 6 and 12 months). Semi-quantitative analysis of proteomic data (HPLC-MS/MS), including protein identification and annotation, was carried out using the MaxQuant and STRING software. Results. A significant change in the level of seven proteins SOD1, CSTA, FGB, ENO1, BPI, BPIFB1, SERPINB13 was revealed during the dynamic observation. The analysis of enriching functional groups based on GeneOntology data showed that these proteins are most associated with the activation of immune (innate immunity) and antimicrobial processes, and are also involved in the regulation of apoptosis and epithelial-mesenchymal transformation. The change in the level of the proteins is likely to be mediated by the elimination of the HPV virus and associated neoplastic transformation of the cervical epithelium. Conclusion. Proteomic analysis of CVF revealed a panel of proteins that can be used to assess the dynamics of the pathological process and the effectiveness of the chosen treatment strategy for patients with neoplastic changes in the cervix.

Full Text

Restricted Access

About the authors

Natalia L. Starodubtseva

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: n_starodubtseva@oparina4.ru
Ph.D., Head of the Laboratory of Proteomics of Human Reproduction

Alexander G. Brzhozovskiy

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia; Skolkovo Institute of Science and Technology

Email: agb.imbp@gmail.com
Researcher, Laboratory of Proteomics of Human Reproduction

Anna E. Bugrova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia; N.M. Emanuel Institute of Biochemical Physics of RAS

Email: a_bugrova@oparina4.ru
Ph.D., Senior Researcher, Laboratory of Proteomics of Human Reproduction

Aleksey S. Kononikhin

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia; Skolkovo Institute of Science and Technology

Email: konoleha@yandex.ru
Ph.D. Researcher, Laboratory of Proteomics of Human Reproduction

Kirill I. Gusakov

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: kigusakov@gmail.com
PhD Student

Niso M. Nazarova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: grab2@yandex.ru
MD, Leading Researcher

Vladimir E. Frankevich

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: v_frankevich@oparina4.ru
Ph.D., Head of the Department of system biology in reproduction

References

  1. Torre L.A., Bray F., Siegel R.L., Ferlay J. Global Cancer Statistics, 2012. CA Cancer J. Clin. 2015; 65: 87-108. https://dx.doi.org/10.3322/caac.21262.
  2. Wheelee C.M., Hunt W.C., Schiffinan M., Castle P.E., Squamous A. Human papillomavirus genotypes and the cumulative 2-year risk of cervical precancer. J. Infect. Dis. 2006; 194(9): 1291-9. https://dx.doi.org/10.1086/507909.
  3. Doeberitz M.V.K. New markers for cervical dysplasia to visualise the genomic chaos created by aberrant oncogenic papillomavirus infections. Eur. J. Cancer. 2002; 38(17): 2229-42. https://dx.doi.org/10.1016/s0959-8049(02)00462-8.
  4. Ullal A.J., Litaker R.W., Noga E.J. Antimicrobial peptides derived from hemoglobin are expressed in epithelium of channel catfish. Dev. Comp. Immunol. 2008; 32(11): 1301-12. https://dx.doi.org/10.1016/j.dci.2008.04.005.
  5. Van Ostade X., Dom M., Tjalma W., Van Raemdonck G. Candidate biomarkers in the cervical vaginal fluid for the ( self-) diagnosis of cervical precancer. Arch. Gynecol. Obstet. 2018; 297: 295-311. https://dx.doi.org/10.1007/s00404-017-4587-2.
  6. Siciliano R.A., Mazzeo M.F., Spada V., Facchiano A., Acierno A., Stocchero M. et al. Rapid peptidomic profiling of peritoneal fluid by MALDI-TOF mass spectrometry for the identification of biomarkers of endometriosis. Gynecol. Endocrinol. 2014; 30(12): 872-6. https://dx.doi.org/10.3109/09513590.2014. 943718.
  7. Starodubtseva N.L., Brzhozovzkiy A.G., Kononikhin A.S., Bugrova A.E., Nazarova N.M., Gusakov K.I., Indeykina M.I., Chagovets V.V., Frankevich V.E., Nikolaev E.N., Sukhikh G.T. Label-free cervicovaginal fluid proteome profiling reflects the cervix neoplastic transformation. J. Mass Spectrom. 2019; 54(8): 693-703. https://dx.doi.org/10.1002/jms.4374.
  8. Zegels G., Van Raemdonck G.A.A., Tjalma W.A.A., Van Ostade X.W.M. Use of cervicovaginal fluid for the identification of biomarkers for pathologies of the female genital tract. Proteome Sci. 2010; 8: 63. https://dx.doi.org/10.1186/1477-5956-8-63.
  9. Novak R.M., Donoval B.A., Graham P.J., Boksa L.A., Spear G., Hershow R.C. et al. Cervicovaginal levels of lactoferrin , secretory leukocyte protease inhibitor and RANTES and the effects of coexisting vaginoses in human immunodeficiency virus ( HIV ) -seronegative women with a high risk of heterosexual acquisition of HIV infection. Clin. Vaccine Immunol. 2007; 14(9): 1102-7. https://dx.doi. org/10.1128/CVI.00386-06.
  10. Shaw J.L.V, Smith C.R., Diamandis E.P. Proteomic analysis of human cervicovaginal fluid. J. Proteome Res. 2007; 6(7): 2859-65.
  11. Starodubtseva N.L., Kononikhin A.S., Bugrova A.E., Chagovets V., Indeykina M., Krokhina K.N., Nikitina I.V., Kostyukevich Y.I., Popov I.A., Larina I.M., Timofeeva L.A., Frankevich V.E., Ionov O.V., Nikolaev E.N., Sukhikh G.T. Investigation ofurine proteome of preterm newborns with respiratory pathologies. J. Proteomics. 2016; 149: 31-7. https://dx.doi.org/10.1016/j.jprot.2016.06.012.
  12. Tyanova S., Temu T., Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016; 11(12): 2301-19. https://dx.doi.org/10.1038/nprot.2016.136.
  13. von Mering C., Huynen M., Jaeggi D., Schmidt S., Bork P., Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003; 31: 258-61. https://dx.doi.org/10.1093/nar/gkg034.
  14. Fabian T.K., Hermann P., Beck A., Fejerdy P., Fabian G. Salivary defense proteins: Their network and role in innate and acquired oral immunity. Int. J. Mol. Sci. 2012; 13(4): 4295-320. https://dx.doi.org/10.3390/ijms13044295.
  15. Blaydon D. C., Nitoiu D., Eckl K.M., Cabral R.M., Bland P., Hausser I. et al. Mutations in CSTA, encoding cystatin A, underlie exfoliative ichthyosis and reveal a role for this protease inhibitor in cell-cell adhesion. Am. J. Hum. Genet. 2011; 89(4): 564-71. https://dx.doi.org/10.1016/j.ajhg.2011.09.001.
  16. Bylaite M., Moussali H., Marciukaitiene I., Ruzicka T., Walz M. Expression of cathepsin L and its inhibitor hurpin in inflammatory and neoplastic skin diseases. Exp. Dermatol. 2006; 15(2): 110-8. https://dx.doi.org/10.1111/j.1600-0625.2005.00389.x.
  17. Lehne B., Smith A., Bennett P.R., Mitra A., Lee Y.S., Li J.V. et al. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. Sci. Rep. 2015; 5: 1-11. https://dx.doi.org/10.1038/ srep16865.
  18. Gray P.W., Flaggs G., Leong S.R., Gumina R.J., Weiss J., Ooi C.E., Elsbach P. Cloning of the cDNA of a human neutrophil bactericidal protein. Structural and functional correlations. J. Biol. Chem. 1989; 264(16): 9505-9.
  19. Mitra A., MacIntyre D.A., Marchesi J.R., Lee Y.S., Bennett P.R., Kyrgiou M. The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: What do we know and where are we going next? Microbiome. 2016; 4(1): 58. https://dx.doi.org/10.1186/s40168-016-0203-0.
  20. Boyd J.M., Schlievert P.M., Rosenthal C.B., Crosby H.A., Salgado-Pabon W., Walker J.N. et al. The Staphylococcus aureus ArlRS Two-Component System Is a Novel Regulator of Agglutination and Pathogenesis. PLoS Pathog. 2013; 9: e1003819. https://dx.doi.org/10.1371/journal.ppat.1003819.
  21. Pluskota E., D’Souza S.E. Fibrinogen interactions with ICAM-1 (CD54) regulate endothelial cell survival. Eur. J. Biochem. 2000; 267(15): 4693-704. https://dx.doi.org/10.1046/j.1432-1327.2000.01520.x.
  22. Pampalakis G., Sotiropoulou G., Vlahou A., Agalioti T., Prosnikli E., Zoumpourlis V. A tumor-protective role for human kallikrein-related peptidase 6 in breast cancer mediated by inhibition of epithelial-to-mesenchymal transition. Cancer Res. 2009; 69(9): 3779-87. https://dx.doi.org/10.1158/0008-5472.can-08-1976.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies