Two New Species of the Genus Cryptomonas (Cryptophyta: Cryptophyceae) from Cat Tien National Park (Vietnam)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

In this paper, we describe two new species of the genus Cryptomonas from Cat Tien National Park (Vietnam): Cryptomonas pascheri and Cryptomonas playfairii, based on morphological characteristics and molecular analysis of the 18S, 28S, ITS2 rDNA and psb A cpDNA regions. The concept of compensatory base substitutions (CBCs) was also used for delimiting taxa. Both species are included in the same clade with C. lundii. If C. pascheri is morphologically similar to other species of the clade, then C. playfairii has obvious morphological differences. Each of the described species has clear molecular differences from related species in the C. lundii clade.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Martynenko

A.N. Severtsov Institute of Ecology and Evolution оf the Russian Academy of Sciences; Coastal Branch of the Joint Vietnam-Russia Tropical Science and Technology Research Center

Хат алмасуға жауапты Автор.
Email: nikita-martynenko@yandex.ru
Ресей, Moscow; Nha Trang, Vietnam

E. Gusev

A.N. Severtsov Institute of Ecology and Evolution оf the Russian Academy of Sciences; Coastal Branch of the Joint Vietnam-Russia Tropical Science and Technology Research Center

Email: nikita-martynenko@yandex.ru
Ресей, Moscow; Nha Trang, Vietnam

Phan Trong Huan

Coastal Branch of the Joint Vietnam-Russia Tropical Science and Technology Research Center

Email: nikita-martynenko@yandex.ru
Вьетнам, Nha Trang

Әдебиет тізімі

  1. Дещеревс кая О.А., Авилов В.К., Ба Зуй Динь и др. 2013. Современный климат национального парка Кат Тьен (южный Вьетнам): использование климатических данных для экологических исследований // Геофизические процессы и биосфера. Т. 12. № 2. С. 5.
  2. Киселев И.А. 1954. Пирофитовые водоросли // Определитель пресноводных водорослей СССР. Вып. 6.
  3. Кулизин П.В., Мартыненко Н.А., Гусев Е.С. и др. 2022. Новые для флоры России виды рода Cryptomonas (Cryptophyceae) // Биология внутр. вод. № 3. С. 222. h ttps://doi.org/10.31857/S032096522203010X
  4. Матвієнко О.М., Литвиненко Р.М. 1977. Пірофітові водорості – Pyrrophyta // Визначник прісноводних водоростей Української РСР. Т. 3. Ч. 2. Киев: Наук. думка.
  5. Хохлова О.С., Мякшина Т.Н., Кузнецов А.Н., Губин С.В. 2017. Морфогенетические особенности почв Национального парка Кат Тьен, Южный Вьетнам // Почвоведение. № 2. С. 176. https://doi.org/10.7868/S0032180X1612008X
  6. Akaike H. 1974. A new look at the statistical model identification // IEEE Trans. Autom. Control. V. 19(6). P. 716. h ttps://doi.org/10.1109/TAC.1974.1100705
  7. Altenburger A., Blossom H.E., Garcia-Cuetos L. et al. 2020. Dimorphism in cryptophytes – The case of Teleaulax amphioxeia / Plagioselmis prolonga and its ecological implications // Sci. Adv. V. 6(37). eabb1611. h ttps://doi.org/10.1126/sciadv.abb161
  8. Andersen R.A. 2005. Algal Culturing Techniques. Oxford: Elsevier Acad. Press.
  9. Blanc L., Maury-Lechon G., Pascal J.P. 2000. Structure, floristic composition and natural regeneration in the forests of Cat Tien National Park, Vietnam: an analysis of the successional trends // J. Biogeogr. V. 27(2). P. 141. h ttps://doi.org/10.1046/j.1365-2699.2000.00347.x
  10. Byun Y., Han K. 2006. PseudoViewer: web application and web service for visualizing RNA pseudoknots and secondary structures // Nucleic Acids Res. V. 34 (Suppl. 2). P. 416. h ttps://doi.org/10.1093/nar/gkl210
  11. Caisová L., Marin B., Melkonian M. 2013. A consensus secondary structure of ITS2 in the Chlorophyta identified by phylogenetic reconstruction // Protist. V. 164(4). P. 482. h ttps://doi.org/10.1016/j.protis.2013.04.005
  12. Choi B., Son M., Kim J.I., Shin W. 2013. Taxonomy and phylogeny of the genus Cryptomonas (Cryptophyceae, Cryptophyta) from Korea // Algae. V. 28(4). P. 307. https://doi.org/10.4490/algae.2013.28.4.307
  13. Clay B.L., Kugrens P., Lee R.E. 1999. A revised classification of the Cryptophyta // Bot. J. Linn. Soc. 131(2). P. 131. h ttps://doi.org/10.1111/j.1095-8339.1999.tb01845.x
  14. Coleman A.W. 2000. The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence // Protist. V. 151(1). P. 1. h ttps://doi.org/10.1078/1434-4610-00002
  15. Coleman A.W. 2009. Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide // Mol. Phylogenet. Evol. V. 50(1). P. 197. h ttps://doi.org/10.1016/j.ympev.2008.10.008
  16. Douglas S.E., Murphy C.A., Spencer D.F., Gray M.W. 1991. Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes // Nature. № 350(6314). P. 148. h ttps://doi.org/10.1038/350148a0
  17. George E.E., Barcytė D., Lax G. et al. 2023. A single cryptomonad cell harbors a complex community of organelles, bacteria, a phage, and selfish elements // Curr. Biol. V. 33(10). P. 1982. h ttps://doi.org/10.1016/j.cub.2023.04.010
  18. Gillespie J.J., Johnston J.S., Cannone J.J., Gutell R.R. 2006. Characteristics of the nuclear (18S, 5.8 S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements // Insect Mol. Biol. V. 15(5). P. 657. h ttps://doi.org/10.1111/j.1365-2583.2006.00689.x
  19. Guiry M.D., Guiry G.M. 2023. AlgaeBase. World-wide electronic publication. Galway: National University of Ireland. h ttps://www.algaebase.org ; дата обращения 27 ноября 2023 г.
  20. Gusev E.S., Doan N.H., Nguyen N.L. 2017. Silica-scaled chrysophytes from Cat Tien National Park (Dong Nai Province, Vietnam) // Nova Hedwigia. V. 105(3). P. 347. h ttps://doi.org/10.1127/nova_hedwigia/2017/0416
  21. Gusev E., Podunay Y., Martynenko N. et al. 2020. Taxonomic studies of Cryptomonas lundii clade (Cryptophyta: Cryptophyceae) with description of a new species from Vietnam // Fottea, Olomouc. V. 20(2). P. 137. h ttps://doi.org/10.5507/fot.2020.004
  22. Gusev E., Karthick B., Martynenko N. et al. 2021. Cryptomonas indica sp. nov. (Cryptophyceae: Cryptomonadales), a new species described from the Western Ghats, India // Phytotaxa. V. 518. P. 261. h ttps://doi.org/10.11646/phytotaxa.518.4.3
  23. Gusev E., Martynenko N., Kulizin P., Kulikovskiy M. 2022. Molecular diversity of the genus Cryptomonas (Cryptophyceae) in Russia // Eur. J. Phycol. V. 57(4). P. 526. h ttps://doi.org/10.1080/09670262.2022.2031304
  24. Gusev E., Martynenko N., Shkurina N. et al. 2023. An Annotated Checklist of Algae from the Order Synurales (Chrysophyceae) of Viet Nam // Diversity. V. 15(2). P. 183. h ttps://doi.org/10.3390/d15020183
  25. Hill D.R.A. 1991a. Chroomonas and other blue-green cryptomonads // J. Phycol. V. 27. P. 133. https://doi.org/10.1111/j.0022-3646.1991.00133.x
  26. Hill D.R.A. 1991b. A revised circumscription of Cryptomonas (Cryptophyceae) based on examination of Australian strain // Phycologia. V. 30. P. 170. h ttps://doi.org/10.2216/i0031-8884-30-2-170.1
  27. Hill D.R.A., Rowan K.S. 1989. The biliproteins of the Cryptophyceae // Phycologia. V. 28. P. 455. https://doi.org/10.2216/I0031-8884-28-4-455.1
  28. Hill D.R.A., Wetherbee R. 1989. A reappraisal of the genus Rhodomonas (Cryptophyceae) // Phycologia. V. 28. P. 143. h ttps://doi.org/10.2216/i0031-8884-28-2-143.1
  29. Hoef-Emden K., Melkonian M. 2003. Revision of the genus Cryptomonas (Cryptophyceae): a combination of molecular phylogeny and morphology provides insights into a long-hidden dimorphism // Protist. V. 154(3–4). P. 371. h ttps://doi.org/10.1078/143446103322454130
  30. Hoef-Emden K. 2005. Multiple independent losses of photosynthesis and differing evolutionary rates in the genus Cryptomonas (Cryptophyceae): combined phylogenetic analyses of DNA sequences of the nuclear and the nucleomorph ribosomal operons // J. Mol. Evol. V. 60. P. 183. h ttps://doi.org/10.1007/s00239-004-0089-5
  31. Hoef-Emden K., Tran H.D., Melkonian M. 2005. Lineage-specific variations of congruent evolution among DNA sequences from three genomes, and relaxed selective constraints on rbc L in Cryptomonas (Cryptophyceae) // BMC Evol. Biol. V. 5. P. 1. https://doi.org/10.1186/1471-2148-5-56
  32. Hoef-Emden K. 2007. Revision of the genus Cryptomonas (Cryptophyceae) II: Incongruences between classical morphospecies concept and molecular phylogeny in smaller pyrenoid-less cells // Phycologia. V. 46(4). P. 402. h ttps://doi.org/10.2216/06-83.1
  33. Hoef-Emden K., Archibald J.M. 2017. Cryptophyta (Cryptomonads) // Handbook of the Protists. Cham: Springer International Publishing. P. 851.
  34. Hornberger L.O., Maggard I.J., Matthews R.A., Cahoon A.B. 2023. Cryptomonas pyrenoidifera organellar genomes and estimation of its ITS2 sequence diversity using lineage directed barcode primers // Phycologia. V. 62(3). P. 280. h ttps://doi.org/10.1080/00318884.2023.2202069
  35. Javornický P., Hindák F. 1970. Cryptomonas frigoris spec. nova (Cryptophyceae), the new cyst-forming flagellate from the snow of the High Tatras // Biologia. V. 25(4). P. 241.
  36. Katoh K., Toh H. 2010. Parallelization of the MAFFT multiple sequence alignment program // Bioinformatics. V. 26(15). P. 1899. h ttps://doi.org/10.1093/bioinformatics/btq224
  37. Kumar S., Stecher G., Li M. et al. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms // Mol. Biol. Evol. V. 35(6). P. 1547. https://doi.org/10.1093/molbev/msy096
  38. Lund J.W.G. 1942. Contributions to our knowledge of British algae. VIII // J. Bot. V. 80. P. 57.
  39. Martynenko N.A., Gusev E.S., Kulizin P.V. et al. 2020a. A new species of Cryptomonas (Cryptophyceae) from the Western Urals (Russia) // Europ. J. Taxon. V. 649. P. 1. h ttps://doi.org/10.5852/ejt.2020.649
  40. Martynenko N.A., Gusev E.S., Kapustin D.A. et al. 2020b. Cryptomonas cattiensis sp. nov. (Cryptophyceae: Cryptomonadales), a new species described from Vietnam // Phytotaxa. V. 454(2). P. 127. h ttps://doi.org/10.11646/phytotaxa.454.2.4
  41. Martynenko N., Kezlya E., Gusev E. 2022a. Description of a new species of the genus Cryptomonas (Cryptophyceae: Cryptomonadales), isolated from soils in a tropical forest // Diversity. V. 14(11). P. 1001. h ttps://doi.org/10.3390/d14111001
  42. Martynenko N.A., Gusev E.S., Sterlyagova I.N., Kulikovskiy M.S. 2022b. Revealing hidden diversity in the Cryptomonas erosa clade (Cryptophyceae), with the description of two new species from acidic habitats // Phycologia. V. 61(2). P. 184. h ttps://doi.org/10.1080/00318884.2022.2025727
  43. Mittermeier R.A., Turner W.R., Larsen F.W. et al. 2011. Global biodiversity conservation: the critical role of hotspots // Biodiversity hotspots: distribution and protection of conservation priority areas. Berlin: Springer. P. 3.
  44. Müller T., Philippi N., Dandekar T. et al. 2007. Distinguishing species // RNA. V. 13(9). P. 1469. h ttps://doi.org/10.1261/rna.617107
  45. Pascher A. 1925. Neue oder wenig bekannte Protisten. XV. Neue oder wenig bekannte Flagellaten. XIII // Archiv für Protistenkunde. V. 50. P. 486.
  46. Playfair G.I. 1921. Australian freshwater flagellates // Proceedings of the Linnaean Society of New South Wales. V. 46.
  47. Ronquist F., Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models // Bioinformatics. V. 19(12). P. 1572. h ttps://doi.org/10.1093/bioinformatics/btg180
  48. Schultz J., Maisel S., Gerlach D. et al. 2005. A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota // RNA. V. 11(4). P. 361. h ttps://doi.org/10.1261/rna.7204505
  49. Schwarz G. 1978. Estimating the dimension of a model // The annals of statistics. V. 6(2). P. 61. h ttps://doi.org/10.1214/aos/1176344136
  50. Tanifuji G., Kamikawa R., Moore C.E. et al. 2020. Comparative plastid genomics of Cryptomonas species reveals fine-scale genomic responses to loss of photosynthesis // Genome Biol. Evol. V. 12(2). P. 3926. h ttps://doi.org/10.1093/gbe/evaa001
  51. Wolf M., Chen S., Song J. et al. 2013. Compensatory base changes in ITS2 secondary structures correlate with the biological species concept despite intragenomic variability in ITS2 sequences – A proof of concept // PloS ONE. V. 8(6). e66726. h ttps://doi.org/10.1371/journal.pone.0066726
  52. Wuyts J., Van de Peer Y., De Wachter R. 2001. Distribution of substitution rates and location of insertion sites in the tertiary structure of ribosomal RNA // Nucleic Acids Res. V. 29(24). P. 5017. h ttps://doi.org/10.1093/nar/29.24.5017
  53. Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction // Nucleic Acids Res. V. 31(13). P. 3406. h ttps://doi.org/10.1093/nar/gkg595

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Map of the study area (Cat Tien National Park, Vietnam). Arrows indicate sampling locations: 1 – Dong Nai River branch, 2 – Bau Sau Lake.

Жүктеу (951KB)
3. Fig. 2. New to science species of the genus Cryptomonas from Vietnam: a–c – Cryptomonas pascheri sp. nov. (a – ventral view, b – dorsal view, c – lateral view (left side)); g–i – Cryptomonas playfairii sp. nov. (g–e – ventral view (e – the cell is partially turned to the left), g – dorsal view, h – lateral view (left side), i – lateral view (right side)). Arrows indicate: g – pharynx lined with ejectosomes, g – flagella, m – Moppa bodies, p – pyrenoid. Scale bar – 10 µm.

Жүктеу (1MB)
4. Fig. 3. A tree showing the phylogenetic relationships of 69 representatives of the genus Cryptomonas . The genera Rhodomonas , Hemiselmis , and Guillardia are selected as an outgroup. The new species C. pascheri and C. playfairii are highlighted with rectangles. The tree was constructed based on a comparison of the nucleotide sequences of conservative markers: fragments of the genes of the small and large ribosomal subunits of nuclear DNA (18S and 28S rDNA) and a fragment of the psbA gene of cpDNA using the Bayesian approach (BI) and the maximum likelihood method (ML). The nodes show the Bayesian posterior probability (left) and the ML bootstrap value (right).

Жүктеу (759KB)
5. Fig. 4. A tree showing the phylogenetic relationships of 69 representatives of the genus Cryptomonas , constructed based on the analysis of the intergenic transcribed spacer ITS2 rDNA using the Bayesian approach (BI) and the maximum likelihood (ML) method. The nodes show the Bayesian posterior probability (left) and the bootstrap ML value (right). The new species C. pascheri and C. playfairii are highlighted by rectangles.

Жүктеу (856KB)
6. Fig. 5. Models of the secondary structure of the nuclear internal transcribed spacer 2 in the studied species. Black rectangles indicate the positions of compensatory base substitutions (CBCs) between C. pascheri (a), C. playfairii (b) and the species indicated in the figure, where 1A is C. playfairii VNG 2079, 1B is C. pascheri VNG 2086, 2 is C. kisselevii NN 21, 3 is C. lundii CCAC 0107, 4 is C. platyuris R 244, 5 is C. vietnamica VN 873.

Жүктеу (241KB)

© The Russian Academy of Sciences, 2024