Charge-sign dependence of cosmic-ray modulation by the PAMELA experiment

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

To study the solar modulation of cosmic-ray fluxes below 1 GeV, machine learning methods allowed obtaining the flux ratios of positrons and electrons with energies from 100 to 500 MeV, and the fluxes of electrons and protons with 1–1.7 GV rigidities from the PAMELA experiment for 2006–2016. The observed features of the data obtained and its comparison with the AMS-02 experimental data enable researching the charge-sign dependence of the modulation around the solar minimum in 2009 and the maximum in 2015.

Sobre autores

P. Mukhin

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Autor responsável pela correspondência
Email: pasha_myxin@mail.ru
Russia, 115409, Moscow

V. Mikhailov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: pasha_myxin@mail.ru
Russia, 115409, Moscow

A. Mikhailova

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: pasha_myxin@mail.ru
Russia, 115409, Moscow

Bibliografia

  1. Михайлов В.В., Воронов С.А. // Изв. РАН. Сер. физ. 2021. Т. 85. № 9. С. 1344; Mikhailov V.V., Voronov S.A. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 9. P. 1036.
  2. Михайлов В.В., Адриани О., Базилевская Г.А. и др. // Изв. РАН. Сер. физ. 2017. Т. 81. № 2. С. 173; Mikhailov V.V., Adriani O., Bazilevskaya G.A. et al. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. No. 2. P. 203.
  3. Михайлов В.В., Адриани О., Базилевская Г.А. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 8. С. 1073; Mikhailov V.V., Adriani O., Bazilevskaya G.A. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 8. P. 974.
  4. Adriani O., Barbarino G.C., Bazilevskaya G.A. et al. // Phys. Rev. Lett. 2011. V. 106. Art. No. 201101.
  5. Adriani O., Barbarino G.C., Bazilevskaya G.A. et al. // Phys. Rev. Lett. 2013. V. 111. Art. No. 081102.
  6. Adriani O., Barbarino G.C., Bazilevskaya G.A. et al. // Phys. Rev. Lett. 2016. V. 116. Art. No. 241105.
  7. Mechbal S., Mangeard P.-S., Clem J.M. et al. // Astrophys. J. 2020. V. 903. No. 1. Art. No. 21.
  8. Aguilar M., Ali Cavasonza L., Ambrosi G. et al. // Phys. Rev. Lett. 2018. V. 121. Art. No. 051101.
  9. Aguilar M., Ali Cavasonza L., Ambrosi G. et al. // Phys. Rev. Lett. 2018. V. 121. Art. No. 051102.
  10. Picozza P., Galper A.M., Castellini G. et al. // Astropart. Phys. 2007. V. 27. No. 4. P. 296.
  11. Shea M.A., Smart D.F., Gentile L.C. // Phys. Earth Planet. Interact. 1987. V. 48. No. 3–4. P. 200.
  12. https://root.cern.ch/doc/master/classTMVA_1_1Method BDT.html.
  13. Modzelewska R., Bazilevskaya G.A., Boezio M. et al. // Astrophys. J. 2020. V. 904. No. 1. Art. No. 3.
  14. Garcia-Munoz M., Meyer P., Pyle K.R., Simpson J. // Proc. 20th ICRC. V. 3. (Moscow, 1987). P. 303.
  15. Marcelli N., Boezio M., Lenni A. et al. // Astrophys. J. Lett. 2022. V. 925. No. 2. Art. No. L24.
  16. Bishoff D., Potgieter M.S., Aslam O.P.M. // Astrophys. J. 2019. V. 878. No. 1. Art. No. 59.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (69KB)
3.

Baixar (153KB)

Declaração de direitos autorais © П. Мухин, В.В. Михайлов, А.В. Михайлова, 2023