Effects of local parity nonconservation in strong interactions in Pb-Pb collisions at LHC energy

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Accounting for the effects of local parity nonconservation in a strongly interacting medium is implemented within the framework of the Monte Carlo model. Predictions are obtained for the distributions of the invariant masses of di-muons and di-electrons from the decays of light vector mesons in Pb-Pb collisions at the LHC energy, taking into account the resolution of the detecting systems. The influence of fluctuations of the axial chemical potential is estimated.

Sobre autores

V. Kovalenko

Saint-Petersburg State University

Autor responsável pela correspondência
Email: v.kovalenko@spbu.ru
Rússia, St. Petersburg, 199034

Bibliografia

  1. Kharzeev D., Zhitnitsky A. // Nucl. Phys. A. 2007. V. 797. P. 67.
  2. Buckley K., Fugleberg T., Zhitnitsky A. // Phys. Rev. Lett. 2000. V. 84. P. 4814.
  3. Son D.T., Zhitnitsky A.R. // Phys. Rev. D. 2004. V. 70. Art. No. 07401.
  4. Andrianov A.A., Andrianov V.A., Espriu D., Planells X. // Phys. Lett. B. 2012. V. 710. P. 230.
  5. Andrianov A.A., Andrianov V.A., Espriu D., Planells X. // Phys. Rev. D. 2014. V. 90. Art. No. 034024.
  6. Andrianov A., Espriu D., Planells X. // Eur. Phys. J. C. 2013. V. 73. P. 2294.
  7. Andrianov A.A., Andrianov V.A., Espriu D. et al. // EPJ Web Conf. 2017. V. 158. Art. No. 03012.
  8. Abelev B., Adam J., Adamova D. et al. (ALICE Collaboration) // J. Physics G. 2014. V. 41. Art. No. 087001.
  9. Belavin A.A., Polyakov A.M., Shvarts A.S., Tyupkin Y.S. // Phys. Lett. B. 1975. V. 59. P. 85.
  10. McLerran L.D., Mottola E., Shaposhnikov M.E. // Phys. Rev. D. 1991. V. 43. P. 2027.
  11. Moore G.D., Rummukainen K. // Phys. Rev. D. 2000. V. 61. Art. No. 105008.
  12. Shuryak E., Zahed I. // Phys. Rev. D. 2003. V. 67. Art. No. 014006.
  13. Kharzeev D., Pisarski R.D., Tytgat M.H.G. // Phys. Rev. Lett. 1998. V. 81. P. 512.
  14. Kharzeev D. // Phys. Lett. B. 2006. V. 633. P. 260.
  15. Хайдуков З.В. // Письма в ЖЭТФ. 2023. Т. 117. № 10. С. 719; Khaidukov Z.V. // JETP Lett. 2023. V. 117. No. 10. P. 721.
  16. Kovalenko V., Andrianov A., Andrianov V. // J. Phys. Conf. Ser. 2020. V. 1690. Art. No. 012097.
  17. Andrianov A.A., Andrianov V.A., Espriu D. // Particles. 2020. V. 3. P. 15.
  18. Putilova A.E., Iakubovich A.V., Andrianov A.A. et al. // EPJ Web Conf. 2018. V. 191. Art. No. 05014.
  19. Sjöstrand T., Ask S., Christiansen J.R. et al. // Comput. Phys. Commun. 2015. V. 191. P. 159.
  20. Abelev B., Adam J., Adamova D. et al. (ALICE Collaboration) // J. Physics G. 2014. V. 41 Art. No. 087002.
  21. Garcia-Solis E. for the ALICE Collaboration // Nucl. Part. Phys. Proc. 2015. V. 267–269. P. 382.
  22. Eвдокимов С.В., Изучеев В.И., Кондратюк Е.С. и др. // Письма в ЖЭТФ. 2021. Т. 113. С. 291; Evdokimov S.V., Izucheev V.I., Kondratyuk E.S. et al. // JETP Lett. 2021. V. 113. P. 289.
  23. Abgaryan V., Acevedo Kado R., Afanasyev S.V. et al. (MPD Collaboration) // Eur. Phys. J. A. 2022. V. 58. Art. No. 140.
  24. Иванищев Д.А., Котов Д.О., Малаев М.В и др. // Изв. РАН. Сер. физ. 2022. Т. 5. № 12. С. 1800; Ivanishchev D.A., Kotov D.O., Malaev M.V. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 12. P. 1439.
  25. Abramov V.V., Aleshko A., Baskov V.A. et al. // Phys. Part. Nucl. 2021. V. 52. P. 1044.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024