Model bimetallic Pd-Co/HOPG catalysts: preparation and XPS/STM study

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Regularities of formation of bimetallic Pd–Co nanoparticles supported on the highly oriented pyrolytic graphite (HOPG) have been studied by a combination of STM and XPS techniques. Cobalt deposition on monometallic Pd/HOPG sample was determined to lead to formation of the bimetallic Pdcore–Coshell nanoparticles which then transformed into alloyed Pd–Co nanoparticles with homogeneous metal distribution resulting from sample heating at 400—500°C in ultrahigh vacuum. Heating of the Pd–Co/HOPG catalysts at temperatures higher than 500°C in ultrahigh vacuum was revealed to result in sintering of the nanoparticles. Under carbon monoxide environment in a range of temperatures 25—250°C, adsorption-induced segregation of palladium atoms on the surface of the bimetallic nanoparticles was shown to take place, with latter having volcano-shape temperature dependence with a maximum at 200°C. It was established that bimetallic Pd–Co nanoparticles in the model catalysts were stable against sintering up to 250°C in CO atmosphere.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Panafidin

Synchrotron Radiation Facility SKIF, Boreskov Institute of Catalysis

Хат алмасуға жауапты Автор.
Email: mpanafidin@catalysis.ru
Ресей, Nikolsky Prosp., 1, Kol’tsovo, 630559

A. Bukhtiyarov

Synchrotron Radiation Facility SKIF, Boreskov Institute of Catalysis

Email: mpanafidin@catalysis.ru
Ресей, Nikolsky Prosp., 1, Kol’tsovo, 630559

A. Martyanov

Synchrotron Radiation Facility SKIF, Boreskov Institute of Catalysis

Email: mpanafidin@catalysis.ru
Ресей, Nikolsky Prosp., 1, Kol’tsovo, 630559

A. Fedorov

Synchrotron Radiation Facility SKIF, Boreskov Institute of Catalysis

Email: mpanafidin@catalysis.ru
Ресей, Nikolsky Prosp., 1, Kol’tsovo, 630559

I. Prosvirin

Boreskov Institute of Catalysis

Email: mpanafidin@catalysis.ru
Ресей, Lavrentiev Ave., 5, Novosibirsk, 630090

V. Bukhtiyarov

Boreskov Institute of Catalysis

Email: mpanafidin@catalysis.ru
Ресей, Lavrentiev Ave., 5, Novosibirsk, 630090

Әдебиет тізімі

  1. Wang A., Liu X.Y., Mou C.Y., Zhang T. // J. Catal. 2013. V. 308. P. 258.
  2. Бухтияров В.И., Слинько М.Г. // Успехи химии. 2001. Т. 70. С. 167.
  3. Tao F., Zhang S., Nguyen L., Zhang X. // Chem. Soc. Rev. 2012. V. 41. P. 7980.
  4. Tao F., Grass M.E., Zhang Y., Butcher D.R., Renzas J.R., Liu Z., Chung J.Y., Mun B.S., Salmeron M., Somorjai G.A. // Science. 2008. V. 322. P. 932.
  5. Эллерт О.Г., Цодиков М.В., Николаев С.А., Новоторцев В.М. // Успехи химии. 2014. Т. 83. № 8. С. 718.
  6. Gao F., Goodman D.W. // Chem. Soc. Rev. 2012. V. 41. P. 8009.
  7. Sheng G., Chen J., Ye H., Hu Z., Fu X.Z., Sun R., Huang W., Wong C.P. // J. Colloid Interf. Sci. 2018. V. 522. P. 264.
  8. Zhong M., Li L., Zhao K., He F., Su B., Wang D. // J. Mater. Sci. 2021. V. 56. P. 14222.
  9. Kiyani R., Rowshanzamir S., Parnian M.J. // Energy. 2016. V. 113. P. 1162.
  10. Li T., Wang R., Yang M., Zhao S., Li Z., Miao J., Gao Z. Da, Gao Y., Song Y.Y. // Sustain. Energy Fuels. 2019. V. 4. P. 380.
  11. Wu C.H., Liu C., Su D., Xin H.L., Fang H.T., Eren B., Zhang S., Murray C.B., Salmeron M.B. // Nat. Catal. 2018. V. 2. P. 78.
  12. Aragão I.B., Estrada F.R., Barrett D.H., Rodella C.B. // Mol. Catal. 2022. V. 526. P. 112377.
  13. Choi S., Oh M. // Angew. Chem. 2019. V. 131. P. 876.
  14. Revathy T.A., Sivaranjani T., Boopathi A.A., Sampath S., Narayanan V., Stephen A. // Res. Chem. Intermed. 2019. V. 45. P. 815.
  15. Sobhani S., Zarei H., Sansano J.M. // Sci. Rep. 2021. V. 11. P. 17025.
  16. Dabiri M., Vajargahy M.P. // Appl. Organomet. Chem. 2017. V. 31.
  17. Li X., Zhu X., Ren Z., Si X., Lu R., Lu F. // ChemNanoMat. 2022. V. 8.
  18. L’Argentièr P.C., Fígoli N.S. // Ind. Eng. Chem. Res. 1997. V. 36. P. 2543.
  19. Yoshii T., Nakatsuka K., Kuwahara Y., Mori K., Hiromi Yamashita H.Y. // RSC Adv. 2017. V. 7. P. 22294.
  20. Jain R., Gopinath C.S. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 41268.
  21. Yurpalova D.V., Afonasenko T.N., Prosvirin I.P., Bukhtiyarov A.V., Kovtunova L.M., Vinokurov Z.S., Trenikhin M.V., Gerasimov E.Y., Khramov E.V., Shlyapin D.A. // J. Catal. 2024. V. 432. P. 115417.
  22. Yurpalova D.V., Afonasenko T.N., Prosvirin I.P., Bukhtiyarov A.V., Panafidin M.A., Vinokurov Z.S., Trenikhin M.V., Gerasimov E.Y., Gulyaeva T.I., Kovtunova L.M., Shlyapin D.A. // Catalysts. 2023. V. 13. P. 739.
  23. Ma R., Yang T., Sun J., He Y., Feng J., Miller J.T., Li D. // Chem. Eng. Sci. 2019. V. 210. P. 115216.
  24. Chen M., Kumar D., Yi C.W., Goodman D.W. // Science. 2005. V. 310. P. 291.
  25. Li Q., Wang Y., Skoptsov G., Hu J. // Ind. Eng. Chem. Res. 2019. V. 58. P. 20620.
  26. McCue A.J., Anderson J.A. // Front. Chem. Sci. Eng. 2015. V. 9. P. 142.
  27. Chen Z.X., Neyman K.M., Rösch N. // Surf. Sci. 2004. V. 548. P. 291.
  28. Løvvik O.M. // Surf. Sci. 2005. V. 583. P. 100.
  29. Christoffersen E., Stoltze P., Nørskov J.K. // Surf. Sci. 2002. V. 505. P. 200.
  30. Zafeiratos S., Piccinin S., Teschner D. // Catal. Sci. Technol. 2012. V. 2. P. 1787.
  31. Rupprechter G. // Adv. Catal. 2007. V. 51. P. 133.
  32. Van Spronsen M.A., Daunmu K., O’Connor C.R., Egle T., Kersell H., Oliver-Meseguer J., Salmeron M.B., Madix R.J., Sautet P., Friend C.M. // J. Phys. Chem. C. 2019. V. 123. P. 8312.
  33. Zemlyanov D., Aszalos-Kiss B., Kleimenov E., Teschner D., Zafeiratos S., Hävecker M., Knop-Gericke A., Schlögl R., Gabasch H., Unterberger W., Hayek K., Klötzer B. // Surf. Sci. 2006. V. 600. P. 983.
  34. Panafidin M.A., Bukhtiyarov A.V., Prosvirin I.P., Zubavichus Y.V., Bukhtiyarov V.I. // Surf. Interfaces. 2023. V. 41. P. 103255.
  35. Bluhm H., Hävecker M., Knop-Gericke A., Kiskinova M., Schlögl R., Salmeron M. // MRS Bull. 2007. V. 32. P. 1022.
  36. Bukhtiyarov A.V., Prosvirin I.P., Saraev A.A., Klyushin A.Y., Knop-Gericke A., Bukhtiyarov V.I. // Faraday Discuss. 2018. V. 208. P. 255.
  37. McCue A.J., Gibson A., Anderson J.A. // Chem. Eng. J. 2016. V. 285. P. 384.
  38. McCue A.J., Anderson J.A. // J. Catal. 2015. V. 329. P. 538.
  39. Mashkovsky I.S., Bukhtiyarov A.V., Markov P.V., Bragina G.O., Baeva G.N., Smirnova N.S., Panafidin M.A., Chetyrin I.A., Gerasimov E.Y., Zubavichus Y.V., Stakheev A.Y. // Appl. Surf. Sci. 2025. V. 681. P. 161516.
  40. Bukhtiyarov A.V., Panafidin M.A., Prosvirin I.P., Mashkovsky I.S., Markov P.V., Rassolov A.V., Smirnova N.S., Baeva G.N., Rameshan C., Rameshan R., Zubavichus Y.V., Bukhtiyarov V.I., Stakheev A.Y. // Appl. Surf. Sci. 2022. V. 604. P. 154497.
  41. Smirnova N.S., Markov P.V., Baeva G.N., Rassolov A.V., Mashkovsky I.S., Bukhtiyarov A.V., Prosvirin I.P., Panafidin M.A., Zubavichus Y.V., Bukhtiyarov V.I., Stakheev A.Y. // Mendeleev Commun. 2019. V. 29. P. 547.
  42. Ouyang M., Papanikolaou K.G., Boubnov A., Hoffman A.S., Giannakakis G., Bare S.R., Stamatakis M., Flytzani-Stephanopoulos M., Sykes E.C.H. // Nat. Commun. 2021. V. 12. P. 1549.
  43. Jeffery A.A., Lee S.Y., Min J., Kim Y., Lee S., Lee J.H., Jung N., Yoo S.J. // Korean J. Chem. Eng. 2020. V. 37. P. 1360.
  44. Fedorov A.Y., Bukhtiyarov A.V., Panafidin M.A., Prosvirin I.P., Chetyrin I.A., Smirnova N.S., Markov P.V., Zubavichus Y.V., Stakheev A.Y., Bukhtiyarov V.I. // Nano-Structures & Nano-Objects. 2022. V. 29. P. 100830.
  45. Shetty S., Gayen M., Agarwal S., Chatterjee D., Singh A., Ravishankar N. // J. Phys. Chem. Lett. 2022. V. 13. P. 770.
  46. Марков П.В., Бухтияров А.В., Машковский И.С., Смирнова Н.С., Просвирин И.П., Винокуров З.С., Панафидин М.А., Баева Г.Н., Зубавичус Я.В., Бухтияров В.И., Стахеев А.Ю. // Кинетика и катализ. 2019. Т. 60. № 6. С. 816.
  47. Bukhtiyarov A.V., Panafidin M.A., Prosvirin I.P., Smirnova N.S., Markov P.V, Baeva G.N., Mashkovsky I.S., Bragina G.O., Vinokurov Z.S., Zubavichus Y.V., Bukhtiyarov V.I., Stakheev A.Y. // Crystals. 2023. V. 13. P. 1356.
  48. Bukhtiyarov A.V., Panafidin M.A., Chetyrin I.A., Prosvirin I.P., Mashkovsky I.S., Smirnova N.S., Markov P.V., Zubavichus Y.V., Stakheev A.Y., Bukhtiyarov V.I. // Appl. Surf. Sci. 2020. V. 525. P. 146493.
  49. Panafidin M.A., Bukhtiyarov A.V., Prosvirin I.P., Chetyrin I.A., Klyushin A. Yu, Knop-Gericke A., Smirnova N.S., Markov P.V., Mashkovsky I.S., Zubavichus Y.V., Stakheev A.Y., Bukhtiyarov V.I. // Appl. Surf. Sci. 2022. V. 571. P. 151350.
  50. Bukhtiyarov A.V., Panafidin M.A., Prosvirin I.P., Smirnova N.S., Markov P.V., Baeva G.N., Mashkovsky I.S., Bragina G.O., Rameshan C., Gerasimov E.Y., Zubavichus Y.V., Bukhtiyarov V.I., Stakheev A.Y. // Appl. Surf. Sci. 2023. V. 608. P. 155086.
  51. Бухтияров А.В., Панафидин М.А., Просвирин И.П., Зубавичус Я.В., Стахеев А.Ю., Машковский И.С., Бухтияров В.И. // Успехи химии. 2025. Т. 94. С. RCR5148.
  52. Ishida K., Nishizawa T. // J. Phase Equilibria. 1991. V. 12. P. 83.
  53. Демидов Д.В., Просвирин И.П., Сорокин А.М., Роша Т., Кноп-Герике А., Бухтияров В.И. // Кинетика и катализ. 2011. Т. 52 С. 877.
  54. Bukhtiyarov A.V., Prosvirin I.P., Panafidin M.A., Fedorov A.Y., Klyushin A.Y., Knop-Gericke A., Zubavichus Y.V., Bukhtiyarov V.I. // Nanomaterials. 2021. V. 11. P. 3292.
  55. Hohner C., Kettner M., Stumm C., Schuschke C., Schwarz M., Libuda J. // Top. Catal. 2019. V. 62. P. 849.
  56. Hohner C., Kettner M., Stumm C., Blaumeiser D., Wittkämper H., Grabau M., Schwarz M., Schuschke C., Lykhach Y., Papp C., Steinrück H.P., Libuda J. // J. Phys. Chem. C. 2020. V. 124. P. 2562.
  57. Favaro M., Rizzi G.A., Nappini S., Magnano E., Bondino F., Agnoli S., Granozzi G. // Surf. Sci. 2016. V. 646. P. 132.
  58. Ju W., Favaro M., Durante C., Perini L., Agnoli S., Schneider O., Stimming U., Granozzi G. // Electrochim. Acta. 2014. V. 141. P. 89.
  59. Ju W., Brülle T., Favaro M., Perini L., Durante C., Schneider O., Stimming U. // ChemElectroChem. 2015. V. 2. P. 547.
  60. Смирнов М.Ю., Калинкин А.В., Бухтияров В.И. // Кинетика и катализ. 2024. Т. 65. № 1. С. 87.
  61. Смирнов М.Ю., Калинкин А.В., Сорокин А.М., Саланов А.Н., Бухтияров В.И. // Кинетика и катализ. 2023. Т. 64. № 1. С. 3.
  62. Панафидин М.А., Бухтияров А.В., Четырин И.А., Просвирин И.П., Бухтияров В.И. // Кинетика и катализ. 2018. Т. 59. С. 739.
  63. Панафидин М.А., Бухтияров А.В., Клюшин А.Ю., Просвирин И.П., Четырин И.А., Бухтияров В.И. // Кинетика и катализ. 2019. V. 60. P. 806.
  64. http://xpspeak.software.informer.com/4.1/
  65. Moulder J.F., Stckle W.F., Sobol P.E., Bomben K.D. // I.I. Standard XPS Spectra of the Elements. In: Chastain J., King R.C. (Eds.), Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Prairie, 1992.
  66. Scofield J.H. // J. Electron Spectros. Relat. Phenomena. 1976. V. 8. P. 129.
  67. Tanuma S., Powell C.J., Penn D.R. // Surf. Interface Anal. 1994. V. 21. P. 165.
  68. Briggs D., Seah M.P. // Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy. Eds. Chichester: John Wiley&Sons. Inc., 1983.
  69. Bukhtiyarov A.V., Prosvirin I.P., Bukhtiyarov V.I. // Appl. Surf. Sci. 2016. V. 367. P. 214.
  70. Büttner M., Oelhafen P. // Surf. Sci. 2006. V. 600. P. 1170.
  71. Krawczyk M., Sobczak J.W. // Appl. Surf. Sci. 2004. V. 235. P. 49.
  72. Maheswari S., Karthikeyan S., Murugan P., Sridhar P., Pitchumani S. // Phys. Chem. Chem. Phys. 2012. V. 14. P. 9683.
  73. Xue H., Tang J., Gong H., Guo H., Fan X., Wang T., He J., Yamauchi Y. // ACS Appl. Mater. Interfaces. 2016. V. 8. P. 20766.
  74. Carlsson A.F., Naschitzki M., Bäumer M., Freund H.J. // J. Phys. Chem. B. 2003. V. 107. P. 778.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. STM images (100 × 100 nm²), particle size distribution histograms, and their average sizes for monometallic Pd/VGCF (a), initial bimetallic PdCo/VGCF-1 (b), and bimetallic PdCo/VGCF-2 after vacuum annealing at 620°C for 1 h (c).

Жүктеу (481KB)
3. Fig. 2. XPS spectra of Pd3d (a) and Co2p3/2 (b) of the PdCo/VGCF-2 sample annealed at different temperatures under ultrahigh vacuum.

Жүктеу (488KB)
4. Fig. 3. Surface atomic ratios calculated from XPS spectra of Pd3d, Co2p, and C1s for PdCo/VGCF-2 annealed at different temperatures under ultrahigh vacuum.

Жүктеу (202KB)
5. Fig. 4. Pd/Co atomic ratio and intensity ratios Pd MNN/Pd3d and Co LMM/Co2p calculated from Pd3d, Co2p, Pd MNN, and Co LMM spectra for PdCo/VGCF-3 under different experimental conditions.

Жүктеу (197KB)
6. Fig. 5. STM image (100 × 100 nm²) and average particle size for bimetallic PdCo/VGCF-1 after CO treatment (a), and particle size distribution histograms for the initial sample and after CO treatment (b).

Жүктеу (249KB)
7. Fig. 6. XPS spectra of Pd3d (a) and Co2p3/2 (b), and Pd/Co atomic ratios derived from these spectra (c), for the PdCo/VGCF-1 sample after annealing at 500°C in ultrahigh vacuum, CO treatment at various temperatures, and final annealing at 500°C in ultrahigh vacuum.

Жүктеу (453KB)