The effect of calcium stearate on the microbiological corrosion of cement stone concrete

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

To prevent biofouling of cement stone and its damage by fungal microorganisms, it is proposed to introduce 0,5 wt. % calcium stearate into the cement mixture. To ensure volumetric hydrophobization of cement stone, the additive is crushed to nanoparticles. The cement stone was cured in the air for 28 days. To study fungal corrosion, the surface of the cement stone was treated with a suspension of pores of Aspergillus niger fungi. The hydrophobic surface of the cement stone was not biofouled by fungal microorganisms Aspergillus niger during 6 months of the samples being in a humid environment, and black mold foci developed on the surface of ordinary cement stone during this period of time. The action of fungi and their waste products caused a decrease in the amount of calcium in the cement stone by 9 %, and had no effect on the hydrophobized cement stone. Due to the immunity of cement stone with a hydrophobizer to the action of microorganisms and water, free calcium hydroxide is not removed from the structure, but some amount is washed out of the surface layer and the pore liquid. A significant slowdown in mass transfer in cement stone under the action of liquids is provided by the hydrophobicity of the surface of cement stone and the walls of pores and capillaries, imparted by calcium stearate, as well as partial colmatation of the pore structure by means of the introduced additive.

Толық мәтін

Рұқсат жабық

Авторлар туралы

K. Strokin

Sakhalin State University

Хат алмасуға жауапты Автор.
Email: strokin07@rambler.ru

Doctor of Sciences (Economics), Advisor of RAACS

Ресей, 33, Kommunisticheskiy Avenue, Yuzhno-Sakhalinsk, 693000

A. Galtsev

Sakhalin State University

Email: galts.alexey@gmail.com

Senior Lecturer

Ресей, 33, Kommunisticheskiy Avenue, Yuzhno-Sakhalinsk, 693000

V. Konovalova

Ivanovo State Polytechnic University

Email: kotprotiv@yandex.ru

Doctor of Sciences (Engineering)

Ресей, 21, Sheremetevskiy Avenue, Ivanovo, 153000

B. Narmaniya

National Research Moscow State University of Civil Engineering

Email: borisfablee@gmail.com

Postgraduate Student

Ресей, 26, Yaroslavskoye Highway, Moscow, 129337

Әдебиет тізімі

  1. Manso S., Calvo-Torras M.Á., De Belie N., Segura I., Aguado A. Evaluation of natural colonisation of cementitious materials: Effect of bioreceptivity and environmental conditions. Science of The Total Environment. 2015. Vol. 512–513, pp. 444–453. http://dx.doi.org/10.1016/j.scitotenv.2015.01.086
  2. Stohl L., Manninger T., von Werder J., Dehn F., Gorbushina A., Meng B. Bioreceptivity of concrete: A review. Journal of Building Engineering. 2023. Vol. 76. 107201. http://dx.doi.org/10.1016/j.jobe.2023.107201
  3. Solomatov V.I., Erofeev V.T., Fel’dman M.S. Biological resistance of concrete. Vestnik of the Mordovian University. 1995. No. 2, pp. 50–54. (In Russian).
  4. Guillitte O. Bioreceptivity: a new concept for building ecology studies. Science of The Total Environment. 1995. Vol. 167, Issues 1–3, pp. 215–220. https://doi.org/10.1016/0048-9697(95)04582-L
  5. Bryukhanov A.L., Vlasov D.Y., Maiorova M.A., Tsarovtseva I.M. The role of microorganisms in the destruction of concrete and reinforced concrete structures. Power Technology and Engineering. 2021. Vol. 54, pp. 609–614. https://doi.org/10.1007/s10749-020-01260-5
  6. Shuying G., Xiaoning T. Impact mechanism of marine biofilm on concrete durability. Chemical Engineering Transactions. 2018. Vol. 64, pp. 613–618. https://doi.org/10.3303/CET1864103
  7. Erofeev V.T., Al-Dulaimi Salman Davud Salman, Fedortsov A.P., Bogatov A.D., Fedortsov V.A. Biological corrosion of concrete. Stroitel’nye Materialy [Construction Materials]. 2020. No. 11, pp. 13–23. (In Russian). https://doi.org/10.31659/0585-430X-2020-786-11-13-23
  8. Chromková I., Čechmánek R. Influence of biocorrosion on concrete properties. Key Engineering Materials. 2018. Vol. 760, pp. 83–90. https://doi.org/10.4028/www.scientific.net/kem.760.83
  9. Karačić S., Modin O., Hagelia P., Persson F., Wilén B.M. The effect of time and surface type on the composition of biofilm communities on concrete exposed to seawater. International Biodeterioration&Biodegradation. 2022. Vol. 173. 105458. http://dx.doi.org/10.1016/j.ibiod.2022.105458
  10. Loginova S.A., Petrenko A.A. Investigation of various types of biological corrosion of concrete. Vestnik of the Dagestan State Technical University. Technical Sciences. 2022. Vol. 49. No. 2, pp. 150–157. (In Russian). http://doi.org/10.21822/2073-6185-2022-49-2-150-157
  11. Kiledal E.A., Keffer J.L., Maresca J.A. Bacterial communities in concrete reflect its composite nature and change with weathering. mSystems. 2021. Vol. 6. Iss. 3. e01153-20. http://doi.org/10.1128/mSystems.01153-20
  12. Erofeev T., Masenina E., Zaharova E., Erofeeva I., Tolmacheva V., Kotlyarskaya I. Microbiological contamination of reinforced concrete structures in the poultry complex. AlfaBuild. 2022. Vol. 25. Iss. 5. 2501. https://doi.org/10.57728/ALF.25.1
  13. Yakovleva G., Sagadeev E., Stroganov V., Kozlova O., Okunev R., Ilinskaya O. Metabolic activity of micromycetes affecting urban concrete constructions. The Scientific World Journal. 2018. Vol. 2018. 8360287. https://doi.org/10.1155/2018/8360287
  14. Sand W. Microbial mechanisms of deterioration of inorganic substrates — a general mechanistic overview. International Biodeterioration&Biodegradation. 1997. Vol. 40. Iss. 2–4, pp. 183–190. https://doi.org/10.1016/S0964-8305(97)00048-6
  15. Svetlov D.A., Kachalov A.N. Microbiological corrosion of building materials. Transportnyye sooruzheniya Internet-journal. 2019. Vol. 6. No. 4. 19SATS419. (In Russian). https://dx.doi.org/10.15862/19SATS419
  16. Bertron A. Understanding interactions between cementitious materials and microorganisms: a key to sustainable and safe concrete structures in various contexts. Materials and Structures. 2014. Vol. 47, pp. 1787–1806. https://doi.org/10.1617/s11527-014-0433-1
  17. Dubey R.S., Shandilya Y. Microbiologically influenced corrosion of concrete: a review. International Journal of Current Research. 2019. Vol. 11. Iss. 06, pp. 4282–4287. https://doi.org/10.24941/ijcr.35365.06.2019
  18. Stroganov V.F., Sagadeev E.V. Biodeterioration of building materials. Stroitel’nye Materialy [Construction Materials]. 2015. No. 5, pp. 5–9. (In Russian).
  19. Giannantonio D.J., Kurth J.C., Kurtis K.E., Sobe- cky P.A. Effects of concrete properties and nutrients on fungal colonization and fouling. International Bio- deterioration&Biodegradation. 2009. Vol. 63. Iss. 3, pp. 252–259.https://doi.org/10.1016/j.ibiod.2008.10.002
  20. Ondrejka Harbulakova V., Estokova A., Luptakova A., Smolakova M. impact of concrete´s curing process on its biocorrossive resistance. International journal of mechanics. 2019. Vol. 13, pp. 79–83.
  21. Denisov A.A., Ganyaev A.M. Biocorrosion of concrete construction in contact with fresh water. Izvestia of the Samara Scientific Center of the Russian Academy of Sciences. 2011. Vol. 13. No. 5 (2), pp. 158–161. (In Russian).
  22. Bone J.R., Stafford R., Hall A.E., Herbert R.J.H. The intrinsic primary bioreceptivity of concrete in the coastal environment – A review. Developments in the Built Environment. 2022. Vol. 10. 100078. https://doi.org/10.1016/j.dibe.2022.100078
  23. Zhang R., Liu P., Ma L., Yang Z., Chen H., Zhu H.X., Xiao H., Li J. Research on the corrosion/permeability/frost resistance of concrete by experimental and microscopic mechanisms under different water–binder ratios. International Journal of Concrete Structures and Materials. 2020. Vol. 14. 10. https://doi.org/10.1186/s40069-019-0382-8
  24. Hayek M., Salgues M., Souche J.C., Cunge E., Giraudel C., Paireau O. Influence of the intrinsic characteristics of cementitious materials on biofouling in the marine environment. Sustainability. 2021. Vol. 13. Iss. 5. 2625. https://doi.org/10.3390/su13052625
  25. Strokin K.B., Novikov D.G., Konovalova V.S., Loginova S.A., Narmaniya B.E. Determination of safe service life of structures made of reinforced concrete at microbially induced corrosion. Sovremennye problemy grazhdanskoj zashhity. 2020. No. 4 (37), pp. 62–69. (In Russian).
  26. Roberts D.J., Nica D., Zuo G., Davis J.L. Quantifying microbially induced deterioration of concrete: initial studies. International Biodeterioration&Biodegradation. 2002. Vol. 49. Iss. 4, pp. 227–234. http://dx.doi.org/10.1016/S0964-8305(02)00049-5
  27. Fedosov S.V., Rumyantseva V.E., Konovalova V.S., Karavaev I.V. Rate of penetration of chloride ions to the surface of steel reinforcement in hydrophobized concretes. Sovremennyye naukoyemkiye tekhnologii. Regional’noye prilozheniye. 2018. No. 4 (56), pp. 93–98. (In Russian).
  28. Konovalova V.S. Investigation of the effect of volumetric hydrophobization on the kinetics of mass transfer processes occurring in cement concretes during corrosion // Materials. 2023. Vol. 16. Iss. 10. 3827. https://doi.org/10.3390/ma16103827
  29. Maryoto A., Gan B.S., Hermanto N.I.S., Setijadi R. The compressive strength and resistivity toward corrosion attacks by chloride ion of concrete containing type I cement and calcium stearate. International Journal of Corrosion. 2018. Vol. 2018. 2042510. https://doi.org/10.1155/2018/2042510
  30. Fedosov S.V., Stepanova V.F., Rumyantseva V.E., Kotlov V.G., Stepanov A.Yu., Konovalova V.S. Korroziya stroitel’nyh materialov: problemy, puti resheniya [Corrosion of building materials: problems, solutions]. Moscow: ASV. 2022. 400 p.
  31. Quraishi M.A., Kumar V., Abhilash P.P., Singh B.N. Calcium stearate: a green corrosion inhibitor for steel in concrete environment. Journal of Materials and Environmental Science. 2011. Vol. 2. No. 4, pp. 365–372.
  32. Konovalova V.S. The relationship of changes in the structural-phase composition and strength of hydrophobized concrete under the influence of a chloride-containing medium. Smart composites in construction. Vol. 3. No. 3, pp. 41–55. (In Russian). https://doi.org/10.52957/27821919_2022_3_41

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Images of the cement stone surface 6 months after infection with fungi: a – without additive; b – with calcium stearate

Жүктеу (100KB)
3. Fig. 2. Kinetics of calcium leaching from cement stone by water: 1 – contaminated sample; 2 – uncontaminated sample; 3 – contaminated sample with hydrophobic additive; 4 – uncontaminated sample with hydrophobic additive

Жүктеу (70KB)
4. Fig. 3. Profiles of Ca(OH)2 concentrations by the thickness of the cement stone sample: a – without additive; b – with calcium stearate, in fungal corrosion in water at different times, days; 1 – 0; 2 – 14; 3 – 28; 4 – 42; 5 – 56; 6 – 70

Жүктеу (110KB)

© ООО РИФ "СТРОЙМАТЕРИАЛЫ", 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>