Modified Gypsum-Cement-Pozzolan Concrete for 3DCP

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

3D concrete printing (3DCP) is an innovative and promising method for constructing buildings and structures. Compositions of fine-grained concrete based on Portland cement are widely used as raw material mixtures in this technology. An alternative to the use of cement binder is the use of gypsum-cement-pozzolan binder, which can significantly reduce the cost of the finished product and, accordingly, increase its competitiveness. The raw material mixtures based on gypsum-cement-pozzolan binder presented on the construction market do not fully meet the requirements of 3DCP. Achieving optimal performance of gypsum-cement-pozzolan mixtures in 3DCP is possible by regulating the content of fine aggregate in the composition of fine-grained concrete, as well as the use of multicomponent modifying additives. The purpose of this work is to develop modified gypsum-cement-pozzolan concretes for 3DCP based on optimization of aggregate content and multifunctional additive, providing optimal rheotechnological properties of raw mixtures and technological characteristics of finished products. The formation of samples during experimental studies was carried out using the layer-by-layer extrusion method on a workshop construction 3D printer “AMT S-6044”. Modified gypsum-cement-pozzolan concretes have been developed for 3DCP with increased ultimate shear stress of the mixture (87.6 Pa), dimensional stability (23 cm), average composite density (1920 g/m3), flexural strength (8.4 MPa) and compression (30.6 MPa) and water resistance (0.85). The possibility of targeted regulation of the structure and properties of gypsum-cement-pozzolan mixtures and concrete due to the synergistic effect of the components of the developed multifunctional complex additive, including an aqueous solution of a polycarboxylate ether, a copolymer based on carboxylic acid esters, and a homogeneous mixture of oligoethoxysiloxanes, has been proven. The results obtained are consistent with the results of the differential thermal analysis of modified gypsum-cement-pozzolanic stone.

Толық мәтін

Рұқсат жабық

Авторлар туралы

R. Mukhametrakhimov

Kazan State University of Architecture and Engineering

Хат алмасуға жауапты Автор.
Email: muhametrahimov@mail.ru

Candidate of Sciences

Ресей, Kazan

R. Rakhimov

Kazan State University of Architecture and Engineering

Email: rahimov@kgasu.ru

Doctor of Sciences

Ресей, Kazan

A. Galautdinov

Kazan State University of Architecture and Engineering

Email: galautdinov89@mail.ru

Candidate of Sciences 

Ресей, Kazan

L. Ziganshina

Kazan State University of Architecture and Engineering

Email: lilya0503199@gmail.com

Candidate of Sciences (Engineering)

Ресей, Kazan

Әдебиет тізімі

  1. Adamtsevich A.O., Pustovgar A.P. Additive manufacturing in construction: the research of the anisotropy concrete strength effect. Stroitel’nye Materialy [Construction Materials]. 2022. No. 9, pp. 18–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-806-9-18-24
  2. Adamtsevich A.O., Pustovgar A.P., Adamtsevich L.A. Additive construction production: features of the technology application. Promyshlennoe i grazhdanskoe stroitel’stvo. 2023. No. 7, pp. 70–78. (In Russian). doi: 10.33622/0869-7019.2023.07.70-78
  3. Akulova I.I., Slavcheva G.S., Makarova T.V. Technical and economic estimate of efficiency of using 3D printing in housing construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 12, pp. 52–56. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-12-52-56
  4. Pustovgar A.P., Adamtsevich L.A., Adamtsevich A.O. International research experience in the field of additive construction manufacturing. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 11, pp. 4–10. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-11-4-10
  5. Maltseva E.V., Dmitriev A.V. The concept of development of additive technologies in individual housing construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 11, pp. 12–17. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-11-12-17
  6. Rehman A.U., Birru B.M., Kim J.-H. Set-on-demand 3D Concrete Printing (3DCP) construction and potential outcome of shotcrete accelerators on its hardened properties. Case Studies in Construction Materials. 2023. Vol. 18, pp. e01955. doi: 10.1016/j.cscm.2023.e01955
  7. Li S., Nguyen-Xuan H., Tran P. Digital design and parametric study of 3D concrete printing on non-planar surfaces. Automation in Construction. 2023. Vol. 145, pp. 104624. doi: 10.1016/J.AUTCON.2022.104624
  8. Slavcheva G.S., Britvina E.A., Shvedova M.A., Yurov P.Y. Effect of filler and aggregates dosage and particle size range on the 3d-printable mixture extrudability. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 21–29. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-21-29
  9. Slavcheva G.S., Artamonova O.V. The rheological behavior of disperse systems for 3d printing in construction: the problem of control and possibility of «nano» tools application. Nanotekhnologii v stroitel’stve: scientific online journal. 2018. Vol. 10. No. 3, pp. 107–122. (In Russian). doi: 10.15828/2075-8545-2018-10-3-107-122
  10. Mukhametrakhimov R.Kh., Ziganshina L.V. Influence of Portland cements with different mineralogical composition on basic properties of 3D-printed composites. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2021. No. 2 (56), pp. 37–49. (In Russian). doi: 10.52409/20731523_2021_2_37
  11. Bozzano F., Esposito C., Mazzanti P., Innocca F., Romeo S. Urban engineered slope collapsed in Rome on February 14th, 2018: Results from remote sensing monitoring. Journal of Geosciences. 2020. Vol. 10. No. 9. doi: 10.3390/geosciences10090331
  12. Patent RF 2794037. Sposob 3D-pechati betonom s dlitel’nym tekhnologicheskim pereryvom [A method for 3D printing concrete with a long technological break]. Mukhametrakhimov R.Kh., Ziganshina L.V. Declared 01.11.2022. Published 11.04.2023. (In Russian)
  13. Kuznetsov D.V., Klyuev S.V., Ryazanov A.N., Sinitsin D.A., Pudovkin A.N., Kobeleva E.V., Nedoseko I.V. Dry mixes on gypsum and mixed bases in the construction of low-rise residential buildings using 3D printing technology. Construction Materials and Products. 2023. Vol. 6. No. 6. doi: 10.58224/2618-7183-2023-6-6-5
  14. Ryazanov A.N., Shigapov R.I., Sinitsin D.A., Kinzyabulatova D.F., Nedoseko I.V. The use of gypsum compositions in the technologies of construction 3D printing of low-rise residential buildings. Problems and prospects. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 39–44. (In Russian). doi: 10.31659/0585-430X-2021-794-8-39-44
  15. Xue W., Twenda C., Shahria Alam M., Xu L., Wan Z. Experimental study on seepage characteristics and stress sensitivity of desulfurization gypsum based concrete under triaxial stress. Journal of Materials Research and Technology. 2023. Vol. 24, pp. 6425–6437. doi: 10.1016/J.JMRT.2023.04.241
  16. Fu J., Haeri H., Sarfarazi V., Asgari K., Marji M. F. The shear behaviors of concrete-gypsum specimens containing double edge cracks under four-point loading conditions. Theoretical and Applied Fracture Mechanics. 2022. Vol. 119, pp. 103361. doi: 10.1016/j.tafmec.2022.103361
  17. Rakhimov R.Z., Rakhimova N.R. Istoriya kompozitsionnykh mineral’nykh vyazhushchikh veshchestv [History of composite mineral binders]. Saint-Peterburg: Lan’. 2023. 268 p.
  18. Rakhimov R.Z., Khaliullin M.I. State and development trends of the gypsum building materials industry. Stroitel’nye Materialy [Construction Materials]. 2010. No. 12, pp. 44–46. (In Russian).
  19. Rakhimov R.Z., Rakhimova N.R. Istoriya nauki i tekhniki. 3-e izdanie, pererabotannoe i dopolnennoe. [History of science and technology. 3rd edition, revised and expanded]. Saint-Peterburg: Lan’. 2022. 528 p.
  20. Chernysheva N., Shatalova S., Lesovik V., Kozlov P. Deformation characteristics of dense and foamed mortars based on cement and gypsum-to-cement binders for 3D printing. Construction and Building Materials. 2023. Vol. 409. 133986. https://doi.org/10.1016/j.conbuildmat.2023.133986
  21. Huang J., Duan B., Cai P., Manuka M., Hu H., Hong Z., Cao R., Jian S., Ma B. On-demand setting of extrusion-based 3D printing gypsum using a heat-induced accelerator. Construction and Building Materials. 2021. Vol. 304. 124624. DOI: https://doi.org/10.1016/j.conbuildmat.2021.124624
  22. Chen Y., Li Z., Figueiredo S. C., Çopuroğlu O., Veer F., Schlangen E. Limestone and calcined clay-based sustainable cementitious materials for 3d concrete printing: a fundamental study of extrudability and early-age strength development. Applied Sciences. 2019. Vol. 9. No. 9, pp. 1809. doi: 10.3390/app9091809
  23. Weng Y., Li M., Zhang D., Tan M. J., Qian S. Investigation of interlayer adhesion of 3D printable cementitious material from the aspect of printing process. Cement and Concrete Research. 2021. Vol. 143. 106386. https://doi.org/10.1016/j.cemconres.2021.106386
  24. Baduge S.K., Navaratnam S., Abu-Zidan Y., McCormack T., Nguyen K., Mendis P., Zhang G., Aye L. Improving performance of additive manufactured (3D printed) concrete: a review on material mix design, processing, interlayer bonding, and reinforcing methods. Structures. 2021. Vol. 29, pp. 1597–1609. doi: 10.3390/app9091809
  25. Breseghello L., Naboni R. Toolpath-based design for 3D concrete printing of carbon-efficient architectural structures. Additive Manufacturing. 2022. Vol. 56, pp. 102872. doi: 10.1016/j.addma.2022.102872
  26. Lesovik V.S., Elistratkin M.Yu., Glagolev E.S., Shatalova S.V., Starikov M.S. Formation of properties of compositions for construction printing. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2017. No. 10, pp. 6–14. (In Russian). doi: 10.12737/article_59cd0c57ede8c1.83340178
  27. Shorstova E.S., Klyuev S.V., Klyuev A.V. Fiber-reinforced concrete for 3D printing. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2019. No. 3, pp. 22–27. (In Russian). doi: 10.34031/article_5ca1f6300a4956.62644399
  28. Potapova E., Guseva T., Shchelchkov K., Fischer H.-B. Mortar for 3D printing based on gypsum binders. Materials Science Forum. 2021. Vol. 1037, pp. 26–31. doi: 10.4028/ href='www.scientific.net/MSF.1037.26' target='_blank'>www.scientific.net/MSF.1037.26
  29. Shatalova S.V., Chernysheva N.V., Lesovik V.S., Elistratkin M.Yu., Sheremet A.A. Development of a comprehensive solution for 3D printing of wall structures. Vestnik of the Belgorod State Technological University named after. V.G. Shukhov. 2022. No. 10, pp. 8–19. (In Russian). doi: 10.34031/2071-7318-2022-7-10-8-19
  30. Dvorkin L.I. The influence of polyfunctional modifier additives on properties of cement-ash fine-grained concrete. Magazine of Civil Engineering. 2020. Vol. 93. No. 1, pp. 121–133. doi: 10.18720/MCE.93.10
  31. Demyanenko O.V., Kulikova A.A., Kopanitsa N.O. Assessment of the influence of a complex multifunctional additive on the performance characteristics of cement stone and concrete. Vestnik of Tomsk State University of Architecture and Civil Engineering. 2020. Vol. 22. No. 5, pp. 139–152. (In Russian). doi: 10.31675/1607-1859-2020-22-5-139-152
  32. Vdovin E.A., Bulanov P.E., Stroganov V.F. Improving the characteristics of road soil-cement with organosilicon compounds. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2023. Vol. 66. No. 4, pp. 301–309. (In Russian). doi: 10.52409/20731523_2023_4_301
  33. Batova М.D., Zhukova N.S., Gordina А.F., Yakov- lev G.I., Shaibadullina A.V., Elrefai А.E.М.М., Orban Z. Gypsum materials modified with complex additive based on nanosilica. Stroitel’nye Materialy [Construction Materials]. 2022. No. 4, pp. 64–71. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-801-4-64-71
  34. Novichenkova T.B., Petropavlovskaya V.B., Belov D.V. Increasing the water resistance of gypsum materials through the use of a complex additive of lime and metakaolin. Self-developing environment of a technical university: scientific research and experimental development. Materials of the IV All-Russian Scientific and Practical Conference. Tver. 20 February 2020, pp. 113–121. (In Russian).
  35. Shvedova M.A., Artamonova O.V. Features of the formation of cement composite materials during micro- and nanomodification with multicomponent additives. Khimiya, fizika i mekhanika materialov. 2021. No. 4 (31), pp. 4–29. (In Russian).
  36. Ziganshina L.V. Fine-grained concrete in additive manufacturing technology (3DCP). Cand. Diss. (Engineering). Kazan. 2022. 282 p. (In Russian)
  37. Izotov V.S., Mukhametrakhimov R.Kh., Galautdi- nov A.R. Complex additive to increase the efficiency of gypsum-cement-pozzolanic binder Stroitel’nye Materialy [Construction Materials]. 2016. No. 8, pp. 70–73. (In Russian).
  38. Galautdinov A.R., Mukhametrakhimov R.Kh. Increasing the water resistance of gypsum-cement-pozzolanic binder based on low-quality gypsum. Izvestiya of the Kazan State University of Architecture and Civil Engineering. 2016. No. 4 (38), pp. 333–343. (In Russian).
  39. Patent RF 2552274. Sposob prigotovleniya gipso- tsementno-putstsolanovoi kompozitsii [Method for preparing gypsum cement-pozzolanic composition]. Izotov V.S., Mukhametrakhimov R.Kh., Galautdi- nov A.R. Declared 14.04.2014. Published 10.06.2015. (In Russian).
  40. Mukhametrakhimov R.Kh., Galautdinov A.R. Multi- functional chemical modifier for gypsum cement compositions. Stroitel’stvo unikal’nykh zdanii i sooruzhenii. 2018. No. 11 (74), pp. 17–25. (In Russian). doi: 10.18720/CUBS.74.2

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig.1. A control room located on the territory of the Ufa Gypsum Company plant, built using 3DCP (URL: https://3dtoday.ru/blogs/news3dtoday/ufimskaya-gipsovaya-kompaniya-realizuet-proekt-po-3d-pecati-dvuxetaznogo-doma)

Жүктеу (118KB)
3. Fig. 2. Construction 3D printer AMT S-6044 in the laboratory of additive construction technologies of KSUAE

Жүктеу (125KB)
4. Fig. 3. Influence of the type and content of modifying additives, the ratio of filler (sand) and GCPB on the compressive strength of GCPC: a – X1 – const=0.75% by weight of the binder; b – X2 – const=0.1% by weight of the binder; c – X3 – const=2% by weight of the binder

Жүктеу (217KB)
5. Fig. 4. Influence of the type and content of modifying additives, the ratio of filler (sand) and GCPB on the softening coefficient of GCPC: a – X1 – const=0.75% by weight of the binder; b – X2 – const=0.1% by weight of the binder; c – X3 – const=2% by weight of the binder

Жүктеу (219KB)
6. Fig. 5. Influence of the type and content of modifying additives, the ratio of filler (sand) and GCPB on the form stability of layers: a – X1 – const=0.75% by weight of the binder; b – X2 – const=0.1% by weight of the binder; c – X3 – const=2% by weight of the binder

Жүктеу (216KB)
7. Fig. 6. Derivatograms: a – initial composition of HCPC (composition No. 1); b – composition modified with multifunctional CD containing GP “Glenium Ace 430”, SP “Best-TB” and GP “Ethyl silicate-40”; composition GCPC (composition No. 2)

Жүктеу (332KB)

© ООО РИФ "СТРОЙМАТЕРИАЛЫ", 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>