Fluke worm Azygia lucii and pike Esox lucius: features of the relationship
- Autores: Frolova T.V.1, Sokolova A.S.1, Izvekova G.I.1
-
Afiliações:
- Papanin Institute for Biology of Inland Waters
- Edição: Nº 4 (2025)
- Páginas: 365–374
- Seção: ZOOLOGY
- URL: https://innoscience.ru/1026-3470/article/view/687613
- DOI: https://doi.org/10.31857/S1026347025040013
- ID: 687613
Citar
Texto integral
Resumo
The effect of Azygia lucii fluke infection on the activity of proteolytic enzymes functioning in the stomach of the host pike and the ability of worms to suppress this activity was studied. The activity of a wide range of proteases was detected in the pike’s stomach. In extracts of marita A. lucii, both pepsin-like activity and activity of alkaline proteases, a significant part of which are metal-dependent proteases, were determined. Even with a low intensity of invasion, trematodes cause an increase in the activity of pepsin-like proteases in the host’s stomach. Worm extract suppresses the activity of commercial pepsin, but neither the incubation medium nor the trematode extract have a statistically significant inhibitory effect on the activity of pepsin-like proteases of the gastric mucosa of pike.
Palavras-chave
Texto integral

Sobre autores
T. Frolova
Papanin Institute for Biology of Inland Waters
Autor responsável pela correspondência
Email: bianka28061981@gmail.com
Rússia, Borok, Yaroslavl Region, 152742
A. Sokolova
Papanin Institute for Biology of Inland Waters
Email: bianka28061981@gmail.com
Rússia, Borok, Yaroslavl Region, 152742
G. Izvekova
Papanin Institute for Biology of Inland Waters
Email: bianka28061981@gmail.com
Rússia, Borok, Yaroslavl Region, 152742
Bibliografia
- Высоцкая Р. У., Немова Н. Н. Лизосомы и лизосомальные ферменты рыб. М.: Наука, 2008. 284 с.
- Добровольский А. А., Евланов И. А., Шульман С. С. Паразитарные системы: анализ структуры и стратегии, определяющих их устойчивость / Экологическая паразитология [Ред. С. С. Шульман]. Петрозаводск: КНЦ РАН, 1994. 198 с.
- Жохов А. Е., Пугачева М. Н. Факторы, влияющие на распределение Azygia lucii в популяции дефинитивного хозяина // Биология внутренних вод. 2023. № 1. С. 115–124. https://doi.org/10.31857/S0320965223010205
- Номенклатура ферментов / Под ред. Браунштейна А. Е. М.: ВИНИТИ, 1979. 324 с.
- Сопрунов Ф. Ф. Молекулярные основы паразитизма. М.: Наука, 1987. 224 с.
- Alarcon F. J., Martínez T. F., Barranco P., Cabello T., Díaz M., Moyano F. J. Digestive proteases during development of larvae of red palm weevil, Rhynchophorus errugineus (Olivier, 1790) (Coleoptera: Curculionidae) // Insect Biochem. Mol. Biol. 2002. V. 32. P. 265–274. https://doi.org/10.1016/S0965-1748(01)00087-X
- Bos D. H., Mayfield C., Minchella D. J. Analysis of regulatory protease sequences identified through bioinformatic data mining of the Schistosoma mansoni genome // BMC Genomics. 2009. № 10:488. https://doi.org/10.1186/1471-2164-10-488
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
- Caffrey C. R., Goupil L., Rebello K. M., Dalton J. P., Smith D. Cysteine proteases as digestive enzymes in parasitic helminthes // PLoS Negl. Trop. Dis. 2018. V. 12(8):e0005840. https://doi.org/10.1371/journal.pntd.0005840
- Cwiklinski K., Dalton J. P. Advances in Fasciola hepatica research using ‘omics’ technologies // Int. J. Parasitol. 2018. V. 48. P. 321–331. https://doi.org/10.1016/j.ijpara.2017.12.001
- Dalton J. P., Skelly P., Halton D. W. Role of the tegument and gut in nutrient uptake by parasitic platyhelminths1 // Can. J. Zool. 2004. V. 82. P. 211–232. https://doi.org/10.1139/z03-213
- Delcroix M., Sajid M., Caffrey C. R., Lim K.-C., Dvorak J., Hsieh I., Bahgat M., Dissous C., McKerrow J.H. A Multienzyme Network Functions in Intestinal Protein Digestion by a Platyhelminth Parasite // J. Biol. Chem. 2006. V. 281. № 51. P. 39316–39329. https://doi.org/10.1074/jbc.M607128200
- Dvorak J., Horn M. Serine proteases in schistosomes and other trematodes // Int. J. Parasitol. 2018. V. 48. P. 333–344. https://doi.org/10.1016/j.ijpara.2018.01.001
- Izvekova G. I., Solovyev M. M. Activity of Digestive Hydrolases in Fish Infected with Cestodes // Biol. Bull. Rev. 2013. V. 3. № 2. P. 167–175. https://doi.org/10.1134/S2079086413020047
- Izvekova G. I., Solovyev M. M. The activity of digestive enzymes of the pike Esox lucius L. infected with the cestode Triaenophorus nodulosus (Pallas) // Inland Water Biol. 2012. V. 5. № 1. P. 113–118. https://doi.org/10.1134/S1995082911040080
- Izvekova G. I., Solovyov M. M., Izvekov E. I. Effect of Caryophyllaeus laticeps (Cestoda, Caryophyllidea) upon Activity of Digestive Enzymes in Bream // Biol. Bull. 2011. V. 38, № 1. P. 50–56. https://doi.org/10.1134/S1062359011010055
- Fernández-Delgado M., Cortez J., Sulbarán G., Matos C., Incani R. N., Ballén D. E., Cesari I. M. Differential distribution and biochemical characteristics of hydrolases among developmental stages of Schistosoma mansoni may offer new anti-parasite targets // Parasitol. Int. 2017. V. 66. P. 816–820. https://doi.org/10.1016/j.parint.2016.09.015
- Kashinskaya E. N., Simonov E. P., Izvekova G. I., Baturina O. A., Solovyev M. M. Variability of Composition of Microbiota of Gastrointestinal Tract of Perch Perca fluviatilis and Prussian Carp Carassius gibelio During the Vegetative Season // J. Ichthyology. 2021. V. 61. № 6. P. 955–971. https://doi.org/10.1134/s0032945221060060
- Kashinskaya E. N., Simonov E. P., Poddubnaya L. G., Vlasenko P. G., Shokurova A. V., Parshukov A. N., Andree K. B., Solovyev M. M. Trophic diversification and parasitic invasion as ecological niche modulators for gut microbiota of whitefish // Front. Microbiol. 2023. V. 14:1090899. https://doi.org/10.3389/fmicb.2023.1090899
- Kolyaskin L. Yu., Shibeko A. M. The Role of Metalloproteinases in the Development of Ischemia-Induced Pathologies of the Blood–Brain Barrier // J. Evol. Biochem. Physiol. 2024. V. 60. № 1. P. 228–246. https://doi.org/10.31857/S0869813924010021
- Michaud D. Gel electrophoresis of proteolytic enzymes // Anal. Chim. Acta. 1998. № 372. P. 173–185.https://doi.org/10.1016/s0003-2670(98)00349-3
- Nolasco-Soria H. Improving and standardizing protocols for alkaline protease quantification in fish // Reviews in Aquaculture. 2021. V. 13. P. 43–65.https://doi.org/10.1111/raq.12463
- Pearson M. S., Ranjit N., Loukas A. Blunting the knife: development of vaccines targeting digestive proteases of blood-feeding helminth parasites // Biol. Chem. 2010. V. 391. P. 901–911.https://doi.org/10.1515/BC.2010.074
- Ranasinghe S. L., McManus D. P. Protease Inhibitors of Parasitic Flukes: Emerging Roles in Parasite Survival and Immune Defence // Trends in Parasitol. 2017. V. 33. № 5. P. 400–413. https://doi.org/10.1016/j.pt.2016.12.013
- Rawlings N. D., Barrett A. J. Evolutionary families of peptidases // Biochem. J. 1993. V. 290. P. 205–218. https://doi.org/10.1042/bj2900205
- Smith D., Cwiklinski K., Jewhurst H., Tikhonova I. G., Dalton J. P. An atypical and functionally diverse family of Kunitz-type cysteine/serine proteinase inhibitors secreted by the helminth parasite Fasciola hepatica // Sci. Rep. 2020. № 10. P. 20657. https://doi.org/10.1038/s41598-020-77687-7
- Vainutis K. S., Voronova A. N., Mironovsky A. N., Zhigileva O. N., Zhokhov A. E. The Species Diversity Assessment of Azygia Looss, 1899 (Digenea: Azygiidae) from the Volga, Ob, and Artyomovka Rivers Basins (Russia), with Description of A. sibirica n. sp. // Diversity. 2023. V. 15. № 1. P. 119. https://doi.org/10.3390/d15010119
- Worthington Biochemical Corporation. Worthington enzyme manual: Enzymes. Enzyme Reagents. 1991. 346 p.
Arquivos suplementares
