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Abstract

Aim - to evaluate the effectiveness of the YOLOVS8 algorithm for automatic
segmentation of demyelination lesions in various locations in patients with
multiple sclerosis.

Material and methods. The study included 120 patients with a clinically
confirmed diagnosis of multiple sclerosis who underwent contrast-enhanced
MRI. The MRI data from patients with different types of disease progression
were analyzed. T1-weighted, T2-weighted, and FLAIR sequences were used
for the analysis. The YOLOV8 algorithm was adapted for medical imaging and
trained on manually annotated MRI scans. Model performance was evaluated
using precision, recall, and F1-Score metrics.

Results. The YOLOvV8 model demonstrated high segmentation performance
with a precision of 0.79, recall of 00.73, and F1-Score of 0.65. The model
effectively identified demyelination lesions in various locations typical

for multiple sclerosis. However, there remains a need to improve recall to
minimize the missed lesions. Testing on independent data confirmed the
stability of the results of the model.

Conclusion. The YOLOvVS8 algorithm shows significant potential for automatic
segmentation of demyelination lesions in multiple sclerosis patients. This
method could be successfully implemented in clinical practice, enabling
faster diagnosis and improved monitoring of disease progression. Further
optimization of the model, through data augmentation techniques and hybrid
architectures, may enhance both segmentation accuracy and recall.
Keywords: magnetic resonance imaging, multiple sclerosis, segmentation,
deep learning.
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AHHOTauus

Iens — oneHnThb 3¢ PeKTUBHOCTD UCIoNb30BaHus anropurMa Y OLOVE s
aBTOMAaTHU4eCKOW CerMeHTallly 04aroB JleMUeSIMHU3aIUY Pa3InuyHOM JIOKaIU-
3aIUy y NAlMeHTOB C PACCesHHbIM CKJIepO30M.

Marepuan u Meropbl. B nccienoBanue BkiitodeHbl 120 nanueHToB € K-
HUYEeCKU JOCTOBEPHBIM JJUarHO30M «PaCCesHHbIM CKJIep0o3y, KOTOPLIM Obliia
nposesieHa MPT c koHTpactupoBanueM. beuin nnpoananusupoBansl MPT na-
IIUEHTOB C Pa3IM4YHBIM TUIIOM TedeHMs 3aboseBaHusl. [l aHa/IU3a UCIIONb-
3oBaimuch T1-, T2-B3Bemennsle 1 FLAIR nocnepoBatenbHOCTH. AJITOPUTM
YOLOVS 6b11 aganTupoBaH 1Jisl MeIMIMHCKUX JaHHBIX U 00y4YeH Ha pa3-
MeyeHHbIX Bpy4HY0 MPT-cHuMkax. OlieHka IpoM3BOAUTEIbBHOCTH MOZIeNU
IIPOBOAIMJIACH C MCIIOJIb30BaHWEM MeTpHK TouHocTH (Precision), mosHOTEI
(Recall) u F1-mepa.

Pesynwrarer. Moznens YOLOVS nokasasna BbICOKMe pe3ysbTaTbl CerMeHTalliu:
ToyHOCTb — 0,79, nonuora — 0,73, F1 mepa — 0,61. Mopens addexruBHO uieH-

MeawnuunHckaa nHopmatuka

TUGUIMPOBaa 04ar leMUueIMHU3alMU Pa3jIMuyHON JIOKaIM3aluy, TUITMYHON
VISl paccesiHHOIO cKilepo3a. OcraeTcst He0OXOUMOCTb B ITOBBILIIEHUH HOJIHO-
TBI 1711 MUHUMU3ALIMU [IPOITyCKa IIopaxkeHUi. TecTpoBaHue Ha HE3aBUCUMBIX
JTAHHBIX TTOJTBEPANIIO CTAaOUIBHOCTb Pe3yJIbTaTOB MOJIEJIH.

BeiBoabl. Anroputm YOLOV8 fneMoHCTpUpYyeT BBICOKUI IIOTeHIUaI Jis
aBTOMaTHYeCKOM CerMeHTallMy 04aroB JileMUeIMHU3alUY y TTaIiueHToB C pac-
CestHHBIM CKJIepo30oM. JlaHHasi MeTo[IMKa MOXXeT ObITh YCIIeIIHO BHeJlpeHa B
KJIMHUYEeCKYIO IPAKTHKY, 9TO IT03BOJIUT YCKOPUTb IMArHOCTUKY U YITy4IIUTh
KOHTPOJIb 3a IIporpeccUpoBaHueM 3abosieBanus. lis AajabHeHIIero MoBbl-
1IIeHUsI TOYHOCTH U TIOJTHOTBI CerMeHTal[d BO3MOXKHA ONITUMU3ALMsl MOJIe
4yepe3 UCIOJIb30BaHKe MeTO0B YCUIIeHUs! IAHHBIX Y THOPUIHBIX apXUTEKTYP.
KiroueBsle cji0Ba: MarHUTHO-Pe30HAHCHAs TOMOrpadUsl, pacCestHHbIN CKIle-
PoO3, CerMeHTanys, Iiybokoe obyueHue.

KondaukT HHTepecoB: He 3asBIleH.
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CnuMCcoK coKpaLleHuin

MPT — MarHuTHo-pesoHaHcHas Tomorpadums; MATPC — npenapatbl,

M3MeHsIIoLLIME TeYeHMe paccesiHHOro ckriepoaa; PC — paccesiHHbIN CKepos;
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Opo6peHo: 01.11.2024
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m INTRODUCTION

ultiple Sclerosis, or MS, is a neuroinflammatory

disease of the central nervous system (CNS) causing
demyelination and neural damage. The disease brings about
frequent disability among young people (aged 18-40) [1].
The progression of disability in the MS patients significantly
affects social, economic and social well-being. The annual
economic burden of MS in the USA is 85 Billion US Dollars.
Similar data was obtained in the European Union, where
average annual expenditure varies from 22,800 Euro (mild
degree of the disease) to 57,500 Euro (severe degree of
the disease) in terms of purchasing power parity, the direct
medical expenses making up to 68% of the total expenditure
[2]. Timely diagnostics is an important factor in decreasing
the disability caused by the disease by early prescription of
disease-modifying therapy (DMT) [3].

The diagnosis of MS is based on the 2017 McDonald
diagnostic criteria [4], which provide increased diagnostic
accuracy for this disease based on clinical, imaging and
immunological indicators. The main thesis of these criteria
is the detection of dissemination of clinical or instrumental
signs in space and/or time [4].

Dissemination in space is characterized by the emergence
of foci of demyelination in the following anatomic regions
of the CNS: periventricular region of the brain, cortical or
juxtacortical region of the brain, infratentorial region of the

www.innoscience.ru

brain or the spinal cord, which indicates multifocal damage.
Dissemination in space may be manifested by one or several
T2-hyperintensive foci characteristic of the MS, at least in
two of the four regions of the CNS [5]. Dissemination in
time describes the development or appearance of new foci
of demyelination in the CNS over time.

A key tool for diagnosing and monitoring patients with MS
and a major component of the continually updated diagnostic
criteria for MS is MRI [6].

The process of identification and segmentation of
lesions in MS is usually performed manually by skilled
neuroradiologists; it is a labor-intensive task prone to error
[6]. Therefore, a necessity exists to develop automated tools
to facilitate the procedure.

At present, work on automation of segmentation of
demyelination foci using machine-learning algorithms
has yielded results that are impressive enough to begin
implementing them into routine clinical practice [7, 8].

Many other automated methods have been developed
for damage detection and segmentation. Methods such as
‘k-nearest neighbor’ [9, 10], Support Vector Machines (SVMs)
[11, 13], Markov random fields [14, 15], ‘random forest’ [16,
17] or special algorithms based on intensity [18-21]. The
category of deep high-level neural networks prevailed, that
were most frequently represented by convolutional neural
networks (CNN) in the form of U-nets [22]. A modification
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of this network was proposed, the nnU-Net [23], a method
that automatically sets up pre-processing stages, architecture,
training and post-processing for improved adaptation to the
properties of the data set and available equipment.

Thus, in the majority of present studies, the automatic
segmentation of the MRI data uses deep learning algorithms
with the U-net architecture [24] in its 2D and 3D modifications
[25].

Despite the continuously accumulating MRI data, it
has not yet been possible to effectively solve the task of
obtaining quality and stable metrics of segmentation
algorithm performance for them to be used in clinical
practice. Therefore, individual groups of researchers continue
looking for the optimal architectures of neural networks,
pre-processing of MRI data, synthetic data [26], and use of
several architectures or approaches for their training [27, 28].

Identification and segmentation of the new foci of MS
remain highly challenging tasks. At present, automatic
methods may be more sensitive for the identification of
new lesions but yield more false positives when compared
to manual segmentation by radiologists experienced in
evaluating the MS patients’ MRI data [8].

m AIM

Use the new deep learning algorithm YOLOvVS to
identify demyelination foci in the subcortical, infratentorial,
periventricular and juxtacortical localizations, and to
calculate the volume of the same.

m MATERIAL AND METHODS

The study was approved by the Ethics Committee of the
Federal State Budgetary Educational Institution of Higher
Education “Samara State Medical University” of the Ministry
of Health of the Russian Federation (Protocol No. 52 dated
12.12.2023).

The study included 120 patients with active stable
progression of the MS diagnosed in compliance with 2017
McDonald diagnostic criteria [4]. The average age of patients
was 35.7+10.2 years, and the gender distribution was even.
The disease activity was established based on the availability
of one exacerbation within the past year or two exacerbations
within the past two years in patients with relapsing-remitting
MS and secondary progressive MS with exacerbations. In
patients with primary progressive course of the disease, its
activity was established by the progress of the disease within
the past year. In patients with the stable course of the disease,
there were no exacerbations or worsening of the disease
during the specified period of time [4]. In patients with the
active course of the disease, there was observed an increase
of neurological deficiency by at least 2 points in one of the
functional scales (e.g., visual, brainstem, pyramidal, sensory,
coordination) or by at least 1 point in two functional systems.
Progression of disability could also be seen on the EDSS
scale (Expanded Disability Status Scale) [29]: increase by at
least 1 point if the initial EDSS score was below 4.0 points,
or increase by at least 0.5 points if the initial EDSS score was
4.0 and above [30]. In patients with a progressive course,
an increase in neurological deficit by 1 point on the EDSS
scale was observed [4]. Neurological examination and EDSS
[31] assessment were performed by a certified neurologist
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EDSS (functional systems)

Visual
Brainstem
Pyramidal
Cerebellar

Sensory
Bowel and
bladder
Cerebral
functions
Bann EDSS

EDSS
e 0-3(1) 144(2) 0-4(2) 0-3(1) 0-3(1) 0-2(1) 1,0-7,0(30)

Note: average values (min.-max.).

Table 1. EDSS scores of patients with MS
Tabnuua 1. [Nokasamenu 6annos no wkane EDSS nayuenmos ¢ PC

with more than 10 years of experience in treating patients
with multiple sclerosis. The neurological status of patients
according to the EDSS scale is presented in Table 1.

In 18 patients, an active course of relapsing-remitting MS
was observed, in 68 patients, no activity was observed over
the past two years, 30 patients had a secondary-progressive
course with exacerbations, and the remaining 4 patients had
a primary-progressive course of the disease.

The study was conducted using a magnetic resonance
imaging (MRI) scanner with a magnetic field strength of
1.5 T. To improve visualization of active demyelination
foci, a gadolinium-based contrast agent was administered
intravenously.

The MRI protocol for the evaluation of the demyelination
foci included the following sequences: T1-weighted
images (T1WI) were taken before and after administering
of the contrast to identify the active foci and evaluate
the accumulation of the contrast; T2-weighted images
(T2WTI) were used to identify the chronic and new foci of
demyelination due to high sensitivity to changes in the tissue
structure; FLAIR (Fluid Attenuated Inversion Recovery)
was used to attenuate the signal from the fluid and better
identification of hyper-intensive foci in the white substance,
specifically in the vicinity of the cerebral ventricles; DWI
(Diffusion Weighted Imaging) was used to evaluate water
diffusion in the tissues and to differentiate the active foci
from the chronic ones; PD-weighted images (Proton Density)
were used for an additional characterization of demyelinated
zones and their differentiation from the normal tissue.

m RESULTS AND DISCUSSION

YOLOV8 neural network was used to segment MRI
images in patients with MS. YOLOv8 (You Only Look
Once, version 8) is the latest iteration of the YOLO family
of models designed for real-time object detection and
segmentation tasks. This architecture is characterized by high
processing speed and prediction accuracy, which makes it
suitable for medical image analysis, where not only accuracy
is important, but also the efficiency of processing large
volumes of data when detecting several classes of objects
simultaneously. In our study, foci of demyelination were
subcortical, juxtacortical, periventricular and infratentorial
localizations.

This study uses the YOLOv8 architecture with
modifications intended for improvement of performance on
medical data. The model was initially trained on a large set
of images (ImageNet) with further training on a specialized
dataset consisting of MS patients’ marked-up MRI scans.
The images included several MRI sequences (T1-weighted,
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Fl-Confidence Curve Precision-Confidence Curve

A B

Figure 1. A— MRI T2 mode with a focus of demyelination.
B — “mask” of demyelination foci obtained as a result of
segmentation by a radiologist.

PucyHok 1. A— MPT T2 pexuM c o4aza demMuenuHusayuu.
B — «macka» o4ya2oB OemMuenuHu3ayuu, nony4yeHHasl B pedysibmame
ceaMeHmMayuu Bpa4oM-paduosiozoM.

T2-weighted, FLAIR), which ensured a better representation
of lesion morphology.

The architecture of the model includes the following
blocks:

1. Backbone: this block uses a modified version of CSPNet

‘oo 0z o4 06 o8 1o

—— Periventricular

(Cross Stage Partial Network) to extract signs from various Juxtacortical ——  Infratentorial
levels of abstraction. CSPNet divides the data flow into two Subcortical Al localizations
Figure 3. Metrics characterizing the quality of the model obtained
on the test sample. A — function of the F1 graph from the Confidence
Start argument; B — graph of the function Accuracy versus the argument
Confidence; C — graph function Confidence from the argument

Recall; D — graph function Precision by argument Recall.

PucyHok 3. Mempuku, xapakmepusytouwjue kKa4ecmao Modenu,

Input of path to DICOM files nosy4eHHol Ha mecmoBoli Bbi6opke. A — 2pacuk yHKuuu F1
om apeymeHma Confidence; B — epacpuk ¢pyHkuuu Precision om

apzaymeHma Confidence; C — epacuk ¢pyHkyuu Confidence om

l apaymeHma Recall; D — epaguk pyHkyuu om apeymenma Recall.

Creation of NIFTI files from contrast
values (create_nifti_from_contrast_volumes)

parts: one part goes through a sequence of convolutions,

! whereas the other is sent to later stages. This alleviated the
Output of path lists to NIFTI calculation burden and improve the model convergence [32].
and raw data files . . . .

(survey_list, raw_data_list) 2. Neck: this block joins the signs from various levels
I using the FPN (Feature Pyramid Network) and the PAN (Path
For each element from Aggregation Network). FPN assists joining the signs with
the lists (survey_list, low and high resolution, and PAN improves transmission of
raw_data_list) information across the network, which is critical for precise

! segmentation.
Get NIFTI metadata 3. Head: the output layer includes adaptive Anchor Boxes

(get_nifti_meta)

and convolution layers that predict classes of objects, their
location and segmentation masks. In this modification of
YOLOvVS8 for the purposes of medical segmentation, the

Create markups of demyelination areas
(create_demyelination_areas_markups)

I block of deep convolution layer was also used to improve

Create YOLO data sensitivity to minor details of lesions [33].
(create_yolo_data) To train the model, images sized 512x512 pixels were
| used. The training was performed using stochastic gradient
Convert masks to polygons descent with a momentum of 0.9 and an initial learning rate
(mask_to_polygons) of 0.001. The dataset was divided into training and testing

J samples in a 90/30 ratio. Following the segmentation of

demyelination foci by the radiologist, images were obtained

L (Fig. 1) on the basis of which ‘masks’ were formed to train
End the YOLOVS algorithm.

The block diagram of the complete algorithm for creating

a training sample, including all stages of primary preparation,

Figure 2. Flowchart of the algorithm for creating a training sample. their standardization based on the features of differences in

PucyHok 2. Brok-cxema anzopumma cosdaHusi o6yuarowedl the matrix of the image itself, is presented in Figure 2.
BbIBOPKU.
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Localization of :

Periventricular (1) 0,82 0,76 0,59 0,85
Juxtacortical (2) 0,80 0,71 0,52 0,82
Subcortical (3) 0,78 0,70 0,79 0,80
Infratentorial (4) 0,76 0,68 0,58 0,78
All types of foci 0,79 0,73 0,61 0,81

Table 2. Metrics of the resulting model regarding
the classification of individual demyelination lesions

Tabnuua 2. [Mokazamenu Mempuk noJiy4eHHoll Modenu
OomHocumerbHO Kiaccugukayuu omaenbHbIX 043208
demuenuHusayuu

To evaluate quality of segmentation, Intersection over
Union (IoU) and Dice Score metrics were used.

The model was trained using the data from 30 examinations,
each having 86 scans on average (total of 2580 scans).

The resulting model is well capable of recognizing
demyelination areas on MRI scans with high accuracy and
confidence. However, it can be improved to minimize omission
of positives. The metrics of the resulting model are shown in
Fig. 3.

The summary of metrics characterizing the quality of the
resulting model by separate types of demyelination foci is
shown in Table 2.

One of the main indicators of quality of the model’s
performance is the confusion matrix shown in Fig. 4. The
classifier works with four classes, each matching a certain
type of demyelination foci and the class uniting all types
of demyelination foci. The model’s prediction are the rows
and the truth is the columns. Using the test data, the model
predicted 258 areas of which 210 were true, the remaining 48
being false-positives.

The confusion matrix helps to visualize and understand
which classes the model identifies correctly, and which ones
cause difficulties. This is critical for further optimization of
the model and improvement of its performance.

It is safe to say, therefore, that the evaluation of ‘precision’,
‘recall’, ‘F1-Score’ and ‘confidence’ metrics allows a detailed
analysis of quality of the model’s performance and its
capability of identifying areas of interest on medical images.
Their improvement is necessary to obtain a more stable model
to allow using the results of its work in clinical or research
practice. These metrics provide a comprehensive evaluation of
the model and help in further improvement of its parameters
and algorithms, which is critical for the development of an
effective clinical decision support system for the diagnosis
and treatment of MS.

m CONCLUSION

The implementation of the YOLOv8 deep learning
algorithm for the automated segmentation of demyelination
foci in patients with multiple sclerosis demonstrated high
precision and efficiency, which confirms the potential of this
approach for clinical practice. Despite the results achieved, the
model can be improved in several areas.

Firstly, the values of segmentation completeness (Recall)
are still lower than needed, which indicates the possibility
of omission of individual foci of demyelination. To improve
segmentation completeness, it is possible to look into the
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Figure 4. Confusion Matrix (0 — all types of demyelination lesions;
1 — periventricular; 2 — juxtacortical; 3 — subcortical;
4 — infratentorial).

PucyHok 4. Mampuya owubok Modenu (0 — Bce munsi
04a2oB deMuenuHu3ayuu; 1 — nepuBeHMPUKySpHbIe;
2 — loKCmakKopmukasbHble; 3 — CybKopmuKasbHble;

4 — uHppameHmMopuaskbHsble).

usage of hybrid architectures that combine YOLOv8 with
other models, e.g. U-Net or nnU-Net that have demonstrated
their efficiency in medical segmentation. A combination
of advantages of different architectures may improve the
model’s capability of identifying even the smallest and hard-
to-discern foci. Another prospective line of work could be the
implementation of model ensemble when the results provided
by several algorithms are joined to improve the overall
precision and completeness.

Secondly, one of the ways of further optimization could be
the use of data augmentation and synthetic image generation
methods. Deep learning models often depend on the volume
and diversity of data, and the increase of the data set by
generating new MRI scans, especially for complicated or hard-
to-reach cases, could improve the precision of segmentation
and lower the probability of false positive results. The use
of generative adversarial networks (GANS) to create such
synthetic data could become an effective approach.

The model can further benefit from using the domain
adaptation methods. This approach enables the algorithms
rained on one data set to perform efficiently on other sets of
data different in quality or scanning methods. In real clinical
practice, different MRI machines with different technical
parameters are used, which can affect the scan quality. The
adaptation of the model to different sets of data, possibly
by means of transfer learning, could improve the model’s
versatility and performance reliability.

Possible directions for further application of the model
include its integration into complex medical decision-making
support systems. Automatic segmentation of demyelination
foci can be used not only for diagnosis, but also for monitoring
disease progression and assessing the effectiveness of therapy.
Regular use of MRI with automatic segmentation could assist
doctors in following up on the patients’ condition, timely
identification of new lesions and evaluation of changes in the

www.innoscience.ru
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existing ones. This will allow for faster adjustment of therapy
and prevention of complications.

Another promising direction is the use of the model for
training specialists. Automated segmentation algorithms can
serve as the basis for educational systems allowing young
doctors and radiologists learn by using real medical data and
comparing their results with those yielded by the algorithm.

MeawnuunHckaa nHopmatuka

This may assist improvement of professional training and
lowering the human factor in diagnostics.

Thus, the implementation and further optimization of
automated segmentation models, e.g. YOLOv8, may contribute
significantly to the quality of multiple sclerosis diagnostics,
speed up the data processing and alleviate the burden on the
medical professionals. 2=
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