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Abstract

Aim - to compare the predictive accuracy of Cox regression and machine
learning (ML) methods regarding recurrence-free survival in patients with
locally advanced renal cell carcinoma after radical treatment. Additionally, to
investigate an extended Cox model in which the risk function is formed using
a neural network approximator (DeepSurv).

Material and methods. This study conducted a retrospective analysis of
data from patients diagnosed with renal cell carcinoma who underwent
radical nephrectomy with thrombectomy from the renal and inferior vena
cava between 2007 and 2024 at the Federal State Budgetary Institution
“RSC for Radiology and Surgical Technologies named after Academician
A.M. Granov”. The study included 100 patients (54 men and 46 women). The
median age was 61.5 years (IQR: 59.7-63). Of the total observations, disease
progression was recorded in 41 cases, while in the remaining 59 cases, the
data were censored. The models were evaluated based on the concordance
index (C-index) and interpreted using SHAP analysis.

Results. The DeepSurv neural network model demonstrated higher predictive
accuracy on the test dataset compared to the classical Cox model (C-index:
0.8056 vs. 0.7917, respectively). This indicates a superior ability of DeepSurv
to rank patients by individual risk of disease progression. Using SHAP analysis,
the key predictors contributing most significantly to the prognosis were
identified: tumor size, ISUP grade, level of tumor thrombosis, and histological
tumor type. The DeepSurv model enabled the capture of complex nonlinear
interactions between features, thereby improving both the interpretability and
clinical applicability of the results.

Conclusion. The obtained data confirm the feasibility of using machine
learning methods for personalized prognosis and optimization of monitoring
strategies in patients with RCC.
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AHHOTauuA

Ilens — CPaBHUTH NPOTHOCTHYECKYIO TOYHOCTE perpeccun Kokca u MetosioB
ManHHoro obyyenust (ML) B oTHoIeHH Ge3pellu/IMBHON BBDKUBAEMOCTH
IAL[MEHTOB C MeCTHO-PACIPOCTPAHEHHBIM [104eYHO-KJIETOYHBIM PAKOM I10CIIe
PaJIMKAIBHOTO JIeYEeHHs], a TaKXKe UCCIIeioBaTh paclivpeHHyo Mofens Kokcea,
B KOTOPOH pyHKIMS prcKa GOpPMUPYeTCst C UCIIOJIb30BAHHUEM HelpoceTeBOoro
armpokcumaropa (DeepSurv).

Marepuan u Metoabl. B 1aHHOM HcciefjoBaHMY ObUT IIPOBEJIeH peTpoCIiek-
TUBHBIY aHAJIN3 JJAHHBIX [AIIMEHTOB C AUArHO30M «II0YEYHO-KIIETOUHBIH PaK»,
TIepeHeCIINX PA/IUKaIbHYI0 HepPIKTOMHIO C TPOMOIKTOMUEN U3 IIOYedHOMH U
HWKHe# 110710#1 BeHbI B riepuop ¢ 2007 o 2024 roawbt 8 PTBY «PHIIPXT um.
axaj. A.M. I'paHoBa». B uccienosanue Britodens! 100 manyenToB (54 Myxun-
HbI 1 46 sxeH1pH). MenuaHHbIH Bo3pacT coctaBuwi 61,5 roma (IQR: 59,7-63). U3
obliero 4rcia HabmosieHn# B 41 citydyae 6bU10 3apMKCHPOBAHO IPOrPECCUPOBA-
HYe 3a60/1eBaHusl, B OCTaJIbHBIX 59 CITyyasiX JaHHbIe ObUIM IIeH3ypUPOBaHHEIe.
OueHka Mojiesieil IPOBOJWIIaCh HAa OCHOBe MHjlekca KoHKopzanuu (C-index) u
HHTepIIpeTHpOoBaJlach ¢ Ucronb3oBaHueM SHAP-ananusa.

Pesynbrarsl. Heitpoceresast Mojiesib DeepSurv niposieMoHcTpHrpoBasia 6oiiee
BBICOKYIO IIPOrHOCTHYECKYIO TOYHOCTb Ha TECTOBOW BEIOOPKE I10 CPABHEHUIO

¢ kiaccryeckoit mogzieneto Kokca (C-index: 0,8056 npotus 0,7917 cootset-
CTBEHHO). JTO CBUZIETeNIbCTBYET O JIyulleil criocobHocT Mofenu DeepSurv
PaHXUPOBATh IAIMEeHTOB 110 MHAUBUYAILHOMY PHCKY IporpeccupoBaHust. C
nomo1nbio SHAP-aHanM3a ycTaHOBIIEHbI KIIFOYeBble MPeJUKTOPbI, BHOCSIIEe
HaWOOJIBIIMI BKIIAJ B [IPOTHO3: pa3Mep OITyXOJIH, CTelleHb 3I0KaueCcTBeH-
Hoct# (ISUP-rpeiin), ypoBeHb omyxoneBoro TpoM603a ¥ MOpGOI0ruuecKuii
THN onyXxoiu. Mogiesib DeepSurv 11o3Bosiiia y4ecTb CII0OXKHbIe HellMHelHble
B3aMMOJIEHCTBHS MeX/y IPU3HAKAMHU, UTO OBBICWIO HHTEPIIPETHPYEMOCTh
Y KJIMHAYEeCKyI0 IPUMEHUMOCTD Pe3y/bTaToB.

3akurouenue. [TosydyeHHble JaHHBIE MTOJTBEPXK/IAIOT 11eJ1eco0bpa3HOCThb
[IPUMEHEHHs] MeTOOB MAIIMHHOIO 06y4YeHUs AJIs [1epCOHAIU3UPOBAHHOIO
IIPOTHO3a ¥ ONTHMU3AIMY TaKTUKY HAOIIONeHHs y GONBHBIX C II09eYHO-KIIe-
TOYHBIM PaKOM.

KirroueBsie cioBa: Ge3pelyiiBHasl BEDKUBAEMOCTD, II09€YHO-KJIETOUHBIH
Ppak, omyxosieBbIi TpoMb03, Mozens Kokca, DeepSurv, MammHHOe 06ydeHue,
SHAP, nporaos, oHKOypoJIOTHsl.
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m INTRODUCTION

Prediction of recurrence-free survival in patients with renal
cell carcinoma after radical surgery is an important task of

urologic oncology. The accuracy of assessment of individual

progression risk determines both the scheme of post-surgery

supervision and the need for adjuvant therapy.

Traditionally, medical studies use the Cox proportionate risk
model based on the supposition of linear impact of covariates
on the risk function logarithm is used to analyze the time to
event:

¥ biXi

h(t|X) = ho(t) - e 1)

where h, (t) -base risk function; 3’ b, X, —linear combination
of predictors [1].

At the same time, the classic Cox model has several
limitations, especially in the context of complex
biomedical data. The main limitation is the suggestion
of linearity and additivity of covariate influence on the
risk function logarithm. This restricts its capability to
model nonlinear or interacting effects, which is critically
important for the analysis of heterogeneous oncological
populations, e.g. patients with tumor thrombosis of the
venous system.

The development of machine learning methods opened
the possibility of flexible approximation of the dependence
of the risk function from predictors without the need of strict
prerequisites of its form [2-4]. Specifically, the DeepSurv
neural network architecture is an extension of the Cox model,
in which the linear prediction index ir replaced with the
output of the multilayer neural network:
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h(t) = hg (t) 9™ ®

where hy (t) is the base risk function; g(w,X,) — result of
the work of the neural network on predictors X, and weighted
coefficients w;. Such a model retains the interpretable structure
of the risk function, but demonstrates a significantly higher
flexibility in accounting for nonlinear and highly dimensional
correlations between the variables.

The use of DeepSurv allows for identification of implicit
dependencies, unevident for the classic Cox regression,
especially with complex clinical and morphological
interactions in place. The question of interpretability remains
a highly important aspect as well. This study additionally uses
the SHAP method (SHapley Additive exPlanations) that allows
for a quantitative assessment of contribution of each feature
to the predicted risk [5].

It is thus possible to compare the traditional linear Cox
model and its neural network extension using a single clinical
sampling. This will allow evaluation of the potential of
machine learning methods in the survival prediction tasks, and
study the possibilities of interpretation of results in a clinically
significant context.

m AIM

To compare the predictive accuracy of Cox regression and
machine learning (ML) methods regarding recurrence-free
survival in patients with locally advanced renal cell carcinoma
after radical treatment, and to investigate an extended Cox
model in which the risk function is formed using a neural
network approximator (DeepSurv).

www.innoscience.ru
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m MATERIAL AND METHODS

This study included a retrospective analysis of records
of patients diagnosed with renal cell carcinoma who had
undergone radical nephrectomy with thrombectomy from the
renal vein and the lower hollow vein in the period from 2007
to 2024 at the Federal State Budgetary Institution “RSC for
Radiology and Surgical Technologies named after Acad. A.M.
Granov”. The study included 100 patients (54 men and 46
women). The median age was 61.5 years (IQR: 59.7-63). Of
the total observations, disease progression was recorded in 41
cases, while in the remaining 59 cases, the data were censored.

Exclusion criteria were level III-IV tumor thrombosis
(Mayo classification), severe intraoperative complications
that required access conversion, and lack of morphological
verification of the tumor. The patients in which no progression
had been recorded by the end of the study, were regarded as
censored cases.

The statistical analysis comprised three successive stages.
The primary analysis included an assessment of recurrence-
free survival with the Kaplan-Meier method and the log-rank
test to compare subgroups. Besides, a set of single-factor
Cox regression models was constructed, which enabled
a preliminary assessment of significance of clinical and
morphological predictors [1].

On the stage of multivariate analysis, the classic Cox
model of proportionate risks was developed. It included the
clinically significant predictors, and those predictors that had
p < 0.1 following the outcomes of the univariate analysis.
The statistical significance of the factors was assessed with
the Wald test, and the analysis was performed with the use of
MedCalc and Statistica software suites.

On the final stage, two survival models were built and
compared: the classis linear Cox model and the DeepSurv
neural network [6]. The two models were trained only
on predictors that proved statistically significant in the
multivariate analysis (p < 0.05). DeepSurv is executed as a
neural network approximating the risk function.

In order to assess the quality of the Cox linear model the
following were used: Overall Model Fit, Likelihood Ratio Test,
and the Wald test. To compare the Cox linear model and the
DeepSurv model on the final stage, the concordance index
(C-index) was used that measured the model’s capability of
properly ranking the patients by risk of progression [7]. To
interpret the results of the DeepSurv model, the SHAP method
was used that enabled a quantitative assessment of contribution
made by each predictor to the individual prognosis and the
identification of the most valuable risk predictors in the context
of the neural network model [5].

m RESULTS

On the first stage, the univariate analysis of predictors
was performed using the Cox proportionate regression. The
following were considered significant factors associated with
decrease of time to progression: ISUP degree of malignity (p =
0.0058), tumor size (p < 0.0001), lymphatic node involvement
(p = 0.0070), venous invasion (p = 0.0074), anemia status (p =
0.0003), thrombocytosis (p = 0.0008), Charlson comorbidity
index (p = 0.0105), disease stage (p < 0.0001), and the level
of tumor thrombosis (level 1: p = 0.0016; level 2: p < 0.0001).
Some variables, such as age and arterial hypertension, did not

www.innoscience.ru
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Hemoglobin 0.5087
Age 0.3034
Grade (ISUP) 0.0058
Tumor size, cm <0.0001
Lymph nodes: indicator 2 0.0070
Level 1 0.0016
Level 2 <0.0001
Venous wall invasion: indicator 2 0.0074
Anemia (Hb <120): indicator 2 0.0003
Thrombocytosis (PLT>400): indicator 2 0.0008
Charlson (index) score 0.0105
Stage <0.0001
Body mass index 0.1047
LDH_N (lactate dehydrogenase) 0.0520

Table 1. Results of the Cox Univariate Model
Tabnuua 1. Peaynbmamsl 00HopakmopHol Modenu Kokca

demonstrate significant influence and were excluded from
subsequent analysis (Table 1).

On the second stage, the multivariate Cox model was
constructed that included the predictors with clinical
significance and p < 0.1 as per outcomes of the univariate
analysis. The resulting model was statistically significant (y*
=70.686, p < 0.0001). The following covariates retained their
impact on the decrease of recurrent-free survival: ISUP grade
(p = 0.0472), morphological tumor type (p = 0.0195), tumor
size (p = 0.0031), and the level of tumor thrombosis (level 1: p
=0.0236; level 2: p = 0.0406) (Table 2). Some variables were
losing significance, likely due to multicollinearity and probable
nonlinear interactions between parameters [8].

To compare the prediction accuracy of survival models,
the entire sampling was randomly divided 80:20 into the
training (n = 80) and testing (n = 20) subsamples. Based on
the training subsample, both models were built: the classis
linear Cox model and the neural network DeepSurv model.
Both models were trained on the same subset of predictors
chosen as statistically significant following the outcomes
of the multivariate analysis (p < 0.05), which ensured the
correct matching of their prognostic capabilities. In the
process of training of the model, steps were taken to control
overfitting.

The comparative analysis of prognostic accuracy of survival
models is shown in Table 3.

" Corme | o | se | wa | p | Eow

Charlson index, score 0.118 0.182 0.425 0.514 1.126

ISUP grade 0.3586 0.1807 3.9378 00472 1431

Anemia (Hb<120) 0.6395 0.4694 18564 0.1730 1.8956
Body mass index 0.1468 0.09001 2.6593 0.1029 1.15810
Venous wall invasion 0.7418 0.7065 1.1023 0.2938 2.0996
I&Er%a’?‘ogﬁ?;g) 03413 05506 0.3842 05354 1.4067
Lymph nodes 0.5176 0.5597 0.8553 0.3561 1.6781
Morphology 1.3723 05874 54572 00195 3.9445
Tumor size, cm 04665 0.1576 87603 0.0031 15943
EE’TO_’QggCV‘OSiS' 06035 05325 12845 02571 1.8284
Level 1 1.0505 04642 51223 00236 2.8591
Level 2 1.3413 06549 41943 0.0406 3.8239

Table 2. Coefficients and Standard Errors in the Multivariate Model

Tabnuua 2. KoagppuyueHmsl u cmaHoapmHble owubKu B
MHo2ogakmopHoU Modenu
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_ C_index (training) C_index (testing)
Cox linear model 0.8500 0.7917

DeepsurvK 0.8537 0.8056

Table 3. Comparison of the Results of the Cox Linear Model and
DeepSurvK

Tabnuuya 3. CpaBHeHue pe3ynbmamoB NocmpoeHusi JuHelHoU
moodenu Kokca u DeepSurvK

The Cox linear model demonstrated a high concordance
index on the training sample (C-index = 0.8500) and a
moderate decrease on the testing sample (C-index = 0.7917),
which meets the expected degree of generalizing capability of
linear models. The DeepSurv neural network model showed
a similar level of prediction on the training sample (C-index
= 0.8537), while showing a higher accuracy on the testing
sample (C-index = 0.8056).

Significance of features in the DeepSurv model was
visualized with the SHAP method [9]. The respective graph
shows a distribution of SHAP-values for each included feature.
The higher the absolute SHAP value, the greater the contribution
of this feature to the resulting prediction of the risk. The color
scale shows the significance of the feature in a specific patient,
from low (blue) to high (red). The features are organized by the
degree of their influence on the model (Fig. 1).

In the course of our study, we confirmed the applicability
of the neural network extension of the Cox model (DeepSurv)
for survival analysis and compared it with the classic model
using a clinical sampling of patients with renal cell carcinoma
and thrombosis of veins. Both approaches demonstrated high
prediction accuracy (C-index ~0.80), notably, DeepSurv
showed a slightly better result on the testing sample (0.8056 vs.
0.7917 in the Cox model). The increase matches the literature
data: modern deep neural networks may be similar or even
surpass the classic Cox regression in prediction accuracy when
analyzing survivability [6, 10]. In particular, a large multicenter
study involving 2139 patients with non-metastatic renal cell
carcinoma performed by S.-S. Byun et al. (2021) showed that
DeepSurv is better at predicting recurrence-free and specific
survival that the Cox model (e.g., C-index for recurrence-free
survival is 0.802 vs. 0.794) [11].

The major advantage of DeepSurv is the absence of the
strict prerequisite of linear influence of covariates on the log-
risk inherent in the Cox model [6]. The classic Cox regression
describes the logarithm of the base risk as the sum of products

High
YposeHb 1

Grade (ISUP)
Pazmep onyxonu, cMm

Feature value

YpoBseHb 2 ‘
Mopdonorus . T'

T T T T T T T T Low
-04 -0.2 00 0.2 0.4 06 08 1.0
SHAP Value (Impact on Risk Score)

Level 1

Grade (ISUP)
Tumor size, cm
Level 2
Morphology

Figure 1. Results of predictor analysis using the SHAP method.
PucyHok 1. Pe3ynsmam aHanusa npedukmopos MemoooM SHAP.
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of coefficients multiplied by predictor values, which simplifies
interpretation but limits the capability of identifying nonlinear
effects and interactions between features. In our multivariate
analysis, this was manifested in the following: some
variables significant in a univariate analysis (e.g., anemia,
thrombocytosis) lost significance on simultaneous inclusion
in the model likely due to multicollinearity and overlapping
information between related factors. Indeed, high correlation
of predictors is known to result in an unstable assessment
of coefficients in the Cox regression and their complicated
interpretation [ 12]. The neural network approach of DeepSurv,
conversely, is capable of flexible approximation of the
connection between the features and survival without the
prerequisite of additive nonlinearity. The multilayer network
may identify underlying nonlinear dependencies not accessible
to the classic model thereby taking into account the multifactor
interactions (e.g., mutual influence of correlated clinical and
morphological features). Furthermore, implementation of
methods of regularization and decrease of feature dimensions
improves the stability of deep models towards noise and data
multicollinearity [6].

Interpretability remains a significant issue of
implementation of deep learning methods into clinical
practice. We solved this problem by using SHAP, a
contemporary approach facilitating quantitative assessment of
the contribution of each feature to the prediction of the model
[13]. The results of the SHAP-analysis (Fig. 1) show that the
greatest influence on the progression risk in the DeepSurv
model came from the tumor size, degree of malignity (ISUP
grade), level of tumor thrombosis and histological subtype
of the tumor. These features are plotted in the top part of the
graph and are characterized with the greatest scattering of the
SHAP-values. Contribution of factors agrees with clinical
concepts: the larger size of the tumor was associated with
the increased risk of recurrence (red dots on the right of
the graph), which reflects the higher tumor burden and the
aggressiveness of the disease. Higher degrees of malignity
(ISUP 3-4) also significantly increased the predicted risk;
this fact matches the well-known predictive significance of
the degree of nuclear atypia of the renal carcinoma, in which
the badly differentiated tumors have worse outcomes [11].
The presence of level II tumor thrombus (with proliferation
to the inferior vena cava) resulted in a significant increase of
progression risk as compared to levels 0 and I. This coincides
with literature data, according to which the tumor invasion of
the venous system per se, especially with the involvement of
the inferior vena cava, is an independent adverse prediction
factor for patients with renal cell carcinoma.

In is noteworthy that according to SHAP-analysis the
influence of level I thrombosis was even more pronounced
than that of level II. This may reflect the statistical
peculiarities of the specific sample: in this study, there were
significantly less patients with level II (n=16), which might
have resulted in the decrease of stability of assessments in the
training of the DeepSurv model. Besides, tumors with level II
thrombosis could be combined, in individual cases, with less
aggressive morphological characteristics (e.g., smaller size
or lower ISUP grade), which the neural network could have
considered in a cumulative way and partially compensate
the total risk.

www.innoscience.ru
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According to H. Park et al. (2019), the presence of the
venous thrombus in the renal cell carcinoma (RCC) is
associated with almost two-fold risk of progression (HR ~1.9)
[14]. In our study, the higher level of thrombosis decreased
the recurrence-free survival in a similar way. Finally, the
neural network identified the significance of the histological
type of the tumor: while the non-clear cell forms (papillary,
chromophobe, and other forms) are usually associated with a
negative outcome of the RCC with venous thrombosis, in our
model the clear-cell histotype showed some increase of the
risk, even though the SHAP scattering was narrow.

A possible explanation of the observed increase of the risk
in the clear-cell RCC could be that this histotype prevailed
in the studied sample, whereas the rare forms (papillary,
chromophobe, medullar) were represented only by a small
sample. This decreases the statistical capacity for the assessment
of their influence and may result in a lowered assessment of
risk associated with them. Besides, clear cell tumors may be
combined with other adverse characteristics, namely, larger
size, high ISUP grade, extended venous thrombosis, which,
in aggregate, increased the predicted progression risk. Finally,
the deep learning model DeepSurv, capable of considering the
nonlinear interactions between variables, was able to identify
the characteristic combinations of features, more typical of the
clear-cell type, and to interpret them as an integral prognostic
marker augmenting the contribution from this histotype.

In our study, the benefit of DeepSurv over the classic
approach in the concordance metrics was rather modest
(difference of ~0.01-0.02), which may be explained by a
limited size of sample (n=100) and the fact that the key risk
drivers for this group of patients are identified quite well by
the linear model. At the same time, even a minor increase
in accuracy assisted by the neural network may be clinically
significant in boundary cases (e.g., in stratification into groups
of high or low risk); what is most important, DeepSurv became
a tool for a deeper understanding of structure of patient data.
On the other hand, the downsides of deep learning include
a more complicated learning process requiring selection of
hyper-parameters and, quite often, large arrays of data for a
reliable generalization. Besides, the “black box” of the neural
networks makes it difficult to provide a direct explanation
why some patient of the other received a certain prognosis.
We demonstrated that this problem may be solved with SHAP
methods. This allowed to make the model conventionally
interpretable, making it close in terms of information value to
the Cox regression known to medical professionals.

The obtained results have practical implications for
clinical practice. The ability to stratify risk in patients with
renal cell carcinoma and tumor thrombosis in a more accurate
way may help optimize treatment strategies and follow-up
care. Firstly, identification of patients with extremely high
risk of progression after surgical treatment may facilitate
addressing the question of adjunctive therapy. The present-
day standard for localized RCC with thrombus remains
the radical nephrectomy with thrombectomy [15]. At the
same time, five-year survival in this group varies greatly
(from ~23% to 70% depending on the tumor volume, level
of thrombosis, and accompanying factors) [15]. Currently,
there is no universally accepted single criterion to identify
which patients from this heterogeneous group would
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truly benefit from adjuvant therapy, such as postoperative
immunotherapy, to improve clinical outcomes [16]. It
follows from our data that a combined model based on
DeepSurv may serve as the basis for such a prognostic tool.
Individual risk prognosis calculated by a neural network
with consideration of a set of clinical and morphological
features may potentially serve as the integral criterion that
is used to select the patients for additional interventions.
For instance, a patient with a large-sized tumor, high ISUP
grade and level II thrombus will be identified as having a
model-predicted high risk of early progression, this warrants
both the intensified surveillance and the consideration of
adjuvant systemic therapy through multidisciplinary team
discussion. Secondly, such models will assist in informing
the patients and planning the follow-up care. Conventional
prognostic schemes (TNM-staging, gradation type factors,
involvement of lymphatic nodes, etc.) do not consider many
nuances, therefore, patients of one group (e.g., stage pT3a
NO) may have different outcomes [11]. The use of a ML-
model aggregating the data on tumor morphology, biomarkers
and thrombus volume, will enable compilation of a more
personalized schedule of clinical examinations: some of the
low-risk patients will avoid redundant visits and check-ups,
whereas the high-risk group should be given more attention.
Thirdly, the use of stratification algorithms at the stage of
planning of examinations and treatment will facilitate a
more justified comparison of various methods. Specifically,
in the context of choosing surgical access (laparoscopy
vs. laparotomy) our analysis confirmed comparability of
oncological outcomes, if the risk factors are spread in the
same fashion. In the future, the DeepSurv type models may
be used to rank patients according to their prognostic index
even before the operation: this will assist correct comparison
of new methods of treatment thereby obtaining higher quality
data for evidence-based medicine. A promising approach
involves integrating clinical variables with molecular and
radiological tumor characteristics (genomic markers, CT/
MRI data) within a unified neural network model [16-18].
Existing examples demonstrate how combining radiomics
with DeepSurv algorithms improves prognostic accuracy
and therapy selection in lung cancer [16]; similarly, adopting
such comprehensive models in renal cell carcinoma could
significantly enhance risk stratification precision.

m CONCLUSION

The neural network Cox model DeepSurv confirmed its
methodological viability in the task of predicting recurrence-free
survival in patients with renal cell carcinoma and thrombosis of
the vein. It allowed consideration of nonlinear links of predictors
and provided a higher (if marginally) prognostic rating. The
use of the SHAP methods provided interpretation of the model
in terms of conventional clinical categories making the results
fit for practical use. These findings demonstrate the potential
for broader implementation of the DeepSurv approach in
oncourology, including patient selection for adjuvant therapies,
development of personalized surveillance protocols, and
treatment strategy decisions based on integrated prognostic
indices. This aligns with the global trend of incorporating
artificial intelligence in medicine to enhance prognostic accuracy
and treatment personalization [5]. P
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