On the structure of temperature pulsations near the surface under convective conditions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Measurements of temperature pulsations under conditions of summer hot weather in the near-surface air layer in a deserted area were carried out using wire sensors distributed spatially and in height with a recording frequency of 1000 Hz. For the power spectra, slopes with values from “–1” to “–1.35” (scale: 0.2–2 m) are noted for frequencies below the “–5/3” inertial interval region. At frequencies above the inertial interval (scales: 0.01-0.1 m), slopes range from “–4.2” to “–5.8”. In some episodes at frequencies less than 0.1–0.3 Hz, slopes from “–0.2” to “–0.85” are observed. Based on the equations of motion in the Boussinesq approximation, we obtained estimates for the observed slopes of the spectra: “–1”, “–4/3”, and “–7/3”, characteristic of a thermally stratified medium. Using a qualitative (visual) method at different signal averaging times (1, 10, 200 s), the occurrence of thermoconvective structures of “ramps” with a temporal length of 0.3–1 s was revealed, which constitute ramps with a length of 1–10 s at larger averaging.

Texto integral

Acesso é fechado

Sobre autores

Е. Malinovskaya

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: elen_am@inbox.ru
Rússia, Moscow

O. Chhetiani

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

Email: elen_am@inbox.ru
Rússia, Moscow

V. Azizyan

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

Email: elen_am@inbox.ru
Rússia, Moscow

Bibliografia

  1. Krishnamurti R., Howard L. N. Large-scale flow generation in turbulent convection // Proceedings of the National Academy of Sciences. 1981. V. 78(4). P. 1981–1985.
  2. Малиновская Е. А., Чхетиани О. Г., Голицын Г. С., Лебедев В. А. О вертикальном распределении пылевого аэрозоля в условиях слабых и умеренных ветров // Доклады РАН. Науки о Земле. 2023. Т. 509. Вып. 2. С. 250–258.
  3. Frisch A. S., Businger J. A. A study of convective elements in the atmospheric surface layer // Boundary-Layer Meteorology. 1973. V. 3(3). P. 301–328.
  4. Koprov B. M. et al. Statistics of air temperature spatial variability in the atmospheric surface layer // Boundary-layer meteorology. 1998. V. 88(3). P. 399–423.
  5. Taylor R. J. Thermal structures in the lowest layers of the atmosphere // Australian Journal of Physics. 1958. V. 11(2). P. 168–176.
  6. Chen W. et al. Coherent eddies and temperature structure functions for three contrasting surfaces. Part I: Ramp model with finite microfront time // Boundary-Layer Meteorology. 1997. V. 84. P. 99–124.
  7. Phong-Anant D., Chambers A. J., Antonia R. A. I. Vertical and horizontal spatial coherence of temperature fluctuations in the atmospheric surface layer / Australasian Conference on Hydraulics and Fluid Mechanics. Barton, ACT, 1980. V. 7. P. 432–434.
  8. Кадер Б. А. Трехслойная структура неустойчиво стратифицированного приземного слоя атмосферы // Изв. АН СССР. Физика атмосферы и океана. 1988. Т. 28. № 12. С 1235–1250.
  9. Vindel J. M., Yagüe C. Intermittency of turbulence in the atmospheric boundary layer: Scaling exponents and stratification influence // Boundary-layer meteorology. 2011. V. 140. P. 73–85.
  10. McNaughton K. G., Clement R. J., Moncrieff J. B. Scaling properties of velocity and temperature spectra above the surface friction layer in a convective atmospheric boundary layer // Nonlinear Processes in Geophysics. 2007. V. 14(3). P. 257–271.
  11. Горчаков Г. И., Чхетиани О. Г., Карпов А. В., Гущин Р. А., Даценко О. И. Турбулентные потоки аэрозоля и тепла на опустыненной территории при всплесковой эмиссии пылевого аэрозоля // Доклады РАН. Науки о Земле. 2024. (в печати).
  12. Martens C. P. Spectrum of turbulence with temperature gradient (in the atmosphere) // Journal of Physics A. 1976. V. 9–10. P. 1751–1770.
  13. Гисина Ф. А. Расчет основных спектральных характеристик турбулентности в термически стратифицированной атмосфере // Труды Ленинградского гидрометеорологического института. 1968. Вып. 34. С. 49–58.
  14. Сазонтов А. Г. Соотношение подобия и спектры турбулентности в стратифицированной среде // Изв. АН СССР. Физика атмосферы и океана. 1979. Т. 15. № 8. С. 820–828.
  15. Chkhetiani O. G., Gledzer E. B., Artamonova M. S., Iordanskii M. A. Dust resuspension under weak wind conditions: direct observations and model // Atm. Chemistry and Physics. 2012. V. 12. P. 5147–5162.
  16. Чхетиани О. Г., Вазаева Н. В. Об алгебраических возмущениях в атмосферном пограничном слое // Известия Российской академии наук. Физика атмосферы и океана. 2019. Т. 55. № 5. С. 62–75.
  17. Dillon T. M., Caldwell D. R. The Batchelor spectrum and dissipation in the upper ocean // Journal of Geophysical Research: Oceans. 1980. V. 85. С. 4. P. 1910–1916.
  18. Young G. S. Convection in the atmospheric boundary layer // Earth-Science Reviews. 1988. V. 25(3). P. 179–198.
  19. Kao S. K. Wavenumber-frequency spectra of temperature in the free atmosphere // Journal of Atmospheric Sciences. 1970. V. 27(7). P. 1000–1007.
  20. Гисина Ф. А. О влиянии градиентов средней скорости и температуры на спектральные характеристики турбулентности // Известия АН СССР. Физика атмосферы и океана. 1966. Т. 2. № 8. С. 804–813.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Layout of 2-meter masts and installation of sensors of the wireless pulsation measuring complex (panorama, along the line, close-up, on a satellite image) and an illustration of the implementation of the second experiment with sensors at different heights.

Baixar (198KB)
3. Fig. 2. Change in the angle of incidence of the sun's rays on the surface (scheme of the sun's movement).

Baixar (55KB)
4. Fig. 3. Temperature pulsation spectra: (a) 22.07 at 12:00 points 1–3; (b) 22.07 at 13:00 points 1–3, (c) 28.07 at 12:00 at heights of 20 and 80 cm, (d) 29.07 at 13:00 at heights of 20 and 80 cm, (d) 28.07 at 10:00 at heights of 20 and 80 cm, (e) 29.07 at 11:00 at heights of 20 and 80 cm (ω is the frequency, u(20).

Baixar (454KB)
5. Fig. 4. Dynamics of changes in the scales of structures (a - first inflection point, b - second inflection point) on a clear day 07/29/2022 and frequencies 07/28/2022 and 07/29/2022 at the inflection points, changes in slope coefficients during the day 07/28 and 07/29 (square areas - moments of time with cloudiness on 07/28).

Baixar (301KB)
6. Fig. 5. Manifestation of self-similarity of structures with changes in the scale of visualization and averaging. (a) representation on an interval of 20 sec. with averaging of 1 sec., the selected structures have a length from 300 to 1000 ms, (b) representation on an interval of 50 sec. with a coefficient of x10, averaging of 10 sec., the selected structures have a length from 1 to 3 sec., (c) and (d) representation on intervals of 50 and 200 sec. with averaging of 100 sec., structures have a length from 1 to 10 sec.

Baixar (388KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024