Superhydrophobisation of Painted Surfaces to Improve Their Protective Properties and Impart New Functional Properties to Materials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The method of superhydrophobization of the epoxy enamel layer based on the use of pulsed laser treatment and chemisorption of fluorinated silane on the textured enamel surface is proposed. It is shown that flexible control of laser irradiation parameters makes it possible to texture the enamel surface without overheating and subsequent destruction. Experimental studies have shown that the proposed superhydrophobic treatment can significantly improve the protective properties of enamel and impart it new functional properties, such as water-repellent properties with extreme contact and roll-off angles, increased resistance to both abrasive loads and surface stresses arising in the three-phase contact zone during water crystallization and ice melting.

Full Text

Restricted Access

About the authors

E. A. Kuzina

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: ame@phyche.ac.ru
Russian Federation, 119071 Moscow

A. M. Emelyanenko

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Author for correspondence.
Email: ame@phyche.ac.ru
Russian Federation, 119071 Moscow

L. B. Boinovich

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: ame@phyche.ac.ru

Academician of the RAS

Russian Federation, 119071 Moscow

References

  1. Бойнович Л.Б. // Вестник РАН. 2013. Т. 83. № 1. С. 10–22. https://doi.org/10.7868/S0869587313010039
  2. Ogihara H., Okagaki J., Saji T. // Langmuir. 2011. V. 27. № 15. P. 9069–9072. https://doi.org/10.1021/la200898z
  3. Manabe K., Saikawa M., Sato I., Loo C.S., Takashima K., Norikane Y. // ACS Appl. Polym. Mater. 2024. V. 6. № 22. P. 13701–13709. https://doi.org/10.1021/acsapm.4c02416
  4. Бузник В.М. // Авиационные материалы и технологии. 2013. № 1 (26). С. 29–34.
  5. Бойнович Л.Б., Бузник В.М., Гракович П.Н., Грязнов В.И., Пашинин А.С., Юрков Г.Ю. // Докл. АН. 2015. Т. 462. № 4. С. 431–434. https://doi.org/10.7868/S0869565215160124
  6. Кондрашов Э.К., Нефедов Н.И., Веренинова Н.П., Кущ П.П., Кичигина Г.А., Кирюхин Д.П., Бузник В.М. // Все материалы. Энциклопедический справочник. 2016. № 1. С. 2–10.
  7. Кузина Е.А., Емельяненко К.А., Домантовский А.Г., Емельяненко А. М., Бойнович Л.Б. // Коллоид. журн. 2022. Т. 84. № 4. С. 453–464. https://doi.org/10.31857/S0023291222040097
  8. Diker C.Ö., Duman O., Tunç S. // Appl. Clay Sci. 2023. V. 244. P. 107109. https://doi.org/10.1016/j.clay.2023.107109
  9. Diker C.Ö., Duman O., Tunç S. // Appl. Clay Sci. 2024. V. 262. P. 107626. https://doi.org/10.1016/j.clay.2024.107626
  10. Емельяненко А.М., Бойнович Л.Б. // Приборы и техника эксперимента. 2002. Т. 45. С. 52–57.
  11. Кузина Е.А., Омран Ф.Ш., Емельяненко A.М., Бойнович Л.Б. // Коллоид. журн. 2023. Т. 85. № 1. С. 63–70. https://doi.org/10.31857/S0023291222600614
  12. Залесский Б.В., Флоренский К.П. // Труды института геологических наук. АН СССР. 1952. Т. 146. № 42. С. 39–50.
  13. Wenzel R.N. // Ind. Eng. Chem. 1936. V. 287 № 8. P. 988–994. https://doi.org/10.1021/ie50320a024
  14. Prorokova N.P., Vavilova S.Y., Bouznik V.M. // J. Fluorine Chem. 2017. V. 204. P. 50–58. https://doi.org/10.1016/j.jfluchem.2017.10.009
  15. Севостьянов Н.В., Розен А.Е., Бузник В.М., Логинов О.Н., Усатый С.Г., Болсуновская Т.А. // Трение и износ. 2020. Т. 41. № 1. С. 55–62.
  16. Севостьянов Н.В., Бурковская Н.П., Бузник В.М. // Трение и износ. 2015. Т. 36. № 6. С. 671–674.
  17. Stern M., Geary A.L. // J. Electrochem. Soc. 1957. V. 104. P. 56–63. https://doi.org/10.1149/1.2428496
  18. Bäuerle D. Material transformations, laser cleaning. In: Laser processing and chemistry. Berlin, Heidelberg: Springer, 2011. P. 535–559. https://doi.org/10.1007/978-3-642-17613-5_23

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Three-dimensional images of the surface profile of superhydrophobized paint obtained by confocal microscopy before (a) and after (b) 120 minutes of abrasive exposure under a layer of vibrating sand.

Download (181KB)
3. Fig. 2. Changes in the angles of wetting (1, 2) and rolling (3, 4) for the surface of two superhydrophobic samples under the influence of cycles of water crystallization/ice melting.

Download (41KB)
4. Fig. 3. The change in the angles of wetting (1, 2) and rolling (3, 4) for the surface of two superhydrophobic samples, as well as the angle of wetting for the surface of the painted sample without subsequent treatment (5), depending on the time of abrasive action on the samples. The droplet images on curves (1, 2) correspond to sitting droplets before the abrasive load (on the left) and after 120 minutes of abrasive action (on the right). The inset shows the change in the mass of colored samples after laser treatment (2) and without treatment (5) as a result of abrasive action.

Download (58KB)
5. Fig. 4. Changes in the electrochemical characteristics of a sample of D16 alloy with initial (1.1ʹ) and superhydrophobic (2.2ʹ, 2ʹʹ) colorful layers of EP-140 enamel during prolonged contact with 0.5 M NaCl solution: (a) evolution of the corrosion current (1, 2) and polarization resistance (1.2ʹ) of the coating(b) frequency dependences of the impedance modulus for different contact times: 24 hours (1, 2); 42 days (1, 2); 60 days (2).

Download (72KB)

Copyright (c) 2024 Russian Academy of Sciences