Nontrivial Shapes of the Mössbauer Spectra of Magnetic Nanoparticles with Different Forms of Magnetic Anisotropy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The continual and quantum-mechanical models of magnetic dynamics are considered for a system of ferromagnetic nanoparticles with different forms of magnetic anisotropy alongside with the corresponding theory for describing the Mössbauer spectra of such materials. The calculations of spectra in these models demonstrate various forms of the magnetic hyperfine structure upon the evolution of the absorption spectra of nanoparticles from a well-resolved magnetic hyperfine structure (sextet of lines for 57Fe nuclei) at low tem-peratures to a single line or a five-stage pedestal at high temperatures. These models substantially broaden the methodological basis for the diagnostics of magnetic nanomaterials by the method of Mössbauer spec-troscopy.

About the authors

M. A. Chuev

Valiev Institute of Physics and Technology, Russian Academy of Sciences

Author for correspondence.
Email: m_a_chuev@mail.ru
Moscow, 117218 Russia

References

  1. Chuev M.A., Hesse J. Non-equilibrium magnetism of single-domain particles for characterization of magnetic nanomaterials // In K.B. Tamayo (ed.), Magnetic properties of solids. Nova Science Publishers. N.Y. 2009. 342 p.
  2. Néel L. Théorie du trainage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites // Ann. Geophys. 1949. V. 5. P. 99–136.
  3. Jones D.H., Srivastava K.K.P. Many-state relaxation model for the Mössbauer spectra of superparamagnets // Phys. Rev. B. 1986. V. 34. P. 7542–7548.
  4. Чуев М.А., Черепанов В.М., Поликарпов M.A. О форме гамма-резонансных спектров медленно релаксирующих наночастиц в магнитном поле // Письма в ЖЭТФ. 2010. Т. 92. № 1. С. 21–27.
  5. Chuev M.A. Multi-level relaxation model for describing the Mössbauer spectra of single-domain particles in the presence of quadrupolar hyperfine interaction // J. Phys.: Condens. Matter. 2011. V. 23. № 426003. P. 1–11.
  6. Чуев М.А. О термодинамике антиферромагнитных наночастиц на примере мессбауэровской спектроскопии // Письма в ЖЭТФ. 2012. Т. 95. № 6. С. 323–329.
  7. Чуев М.А. Нутации намагниченностей подрешеток и их роль в формировании мессбауэровских спектров антиферромагнитных наночастиц // Письма в ЖЭТФ. 2016. Т. 103. № 3. С. 194–199.
  8. Chuev M.A. Excitation spectrum of the Néel ensemble of antiferromagnetic nanoparticles as revealed in Mössbauer spectroscopy // Advances in Condensed Matter Physics. 2017. V. 2017. № 6209206. P. 1–15.
  9. Чуев М.А. Многоуровневая релаксационная модель для описания мессбауэровских спектров наночастиц в магнитном поле // ЖЭТФ. 2012. Т. 141. № 4. С. 698–722.
  10. Garanina A.S., Naymenko V.A., Nikitin A.A. et al. Temperature-controlled magnetic nanoparticles hypethermia inhibits primary tumorgrowth and metastases dissemination // Nanomedicine. 2020. V. 25. P. 102171.
  11. Nikitin A.A., Yurenya A.Yu., Gabbasov R.R. et al. Effects of macromolecular crowding on nanoparticle diffusion: new insights from Mössbauer spectroscopy // J. Phys. Chem. Lett. 2021. V. 12. P. 6804−6811.
  12. Burmistrov I.A., Veselov M.M., Mikheev A.V. et al. Permeability of the Composite Magnetic Microcapsules Triggered by a Non-Heating Low-Frequency Magnetic Field // Pharmaceutics. 2022. V. 14. № 65. P. 1–18.
  13. Stoner E.C., Wohlfarth E.P. A mechanism of magnetic hysteresis in heterogeneous alloys // Phil. Trans. Royal Soc. London A. 1948. V. 240. P. 599–642.
  14. Brown Jr. W.F. Thermal fluctuations of a single-domain particles // Phys. Rev. 1963. V. 130. P. 1677–1686.
  15. Ландау Л.Д., Лифшиц Е.М. Механика. Наука, М.: 1988. 215 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (63KB)
3.

Download (59KB)
4.

Download (56KB)
5.

Download (66KB)