Stress-dependent Magnetization Processes in Co based Amorphous Microwires

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Soft magnetic materials with high magnetic susceptibility are sensitive to changing magnetic fields and generate electrical voltage signals whose spectra contain higher harmonics. Magnetic susceptibility and saturation field are largely determined by magnetoelastic interactions in amorphous ferromagnets, respectively, the amplitudes of higher harmonics should depend on external mechanical stresses. In this work, we study the processes of magnetization reversal in amorphous microwires of two compositions: Co71Fe5B11Si10Cr3 and Co66.6Fe4.28B11.51Si14.48Ni1.44Mo1.69 under the action of external tensile stresses. For the first composition, mechanical stresses exceeding a certain limit (more than 350 MPa) lead to the transformation of the magnetic hysteresis from a bistable type to an inclined one. In this case, a sharp change of the harmonic spectrum is observed. In microwires of the second composition with an initially inclined loop, external stresses cause a monotonous increase in the slope of the hysteresis loop (a decrease in susceptibility). In this case, the amplitudes of higher harmonics change significantly at low stresses, less than 100 MPa. The results were obtained by remagnetization of microwire samples using a system of flat coils, which demonstrates the potential of using these materials as wireless sensors of mechanical stresses with remote reading.

Full Text

Restricted Access

About the authors

S. A. Evstigneeva

Institute of Novel Materials and Nanotechnology National University of Science and Technology MISiS; QLU, Russian Quantum Center

Author for correspondence.
Email: svetlana_evstigneeva95@mail.ru

кафедра технологии материалов электроники

Russian Federation, Moscow, 119049; Moscow, 121205

O. Lutsenko

Institute of Novel Materials and Nanotechnology National University of Science and Technology MISiS; QLU, Russian Quantum Center

Email: svetlana_evstigneeva95@mail.ru

кафедра технологии материалов электроники

Russian Federation, Moscow, 119049; Moscow, 121205

T. Y. Ganzhina

Institute of Novel Materials and Nanotechnology National University of Science and Technology MISiS

Email: svetlana_evstigneeva95@mail.ru

кафедра технологии материалов электроники

Russian Federation, Moscow, 119049

V. V. Miroshkina

Saint Petersburg Electrotechnical University “LETI”

Email: svetlana_evstigneeva95@mail.ru
Russian Federation, Saint Petersburg, 197022

N. A. Yudanov

Institute of Novel Materials and Nanotechnology National University of Science and Technology MISiS

Email: svetlana_evstigneeva95@mail.ru

кафедра технологии материалов электроники

Russian Federation, Moscow, 119049

M. A. Nemirovich

Smart Sensors Laboratory, National University of Science and Technology MISiS

Email: svetlana_evstigneeva95@mail.ru

Department of Electronic Materials Technology

Russian Federation, Moscow, 119049

L. V. Panina

Institute of Novel Materials and Nanotechnology National University of Science and Technology MISiS; Immanuel Kant Baltic Federal University

Email: svetlana_evstigneeva95@mail.ru

кафедра технологии материалов электроники

Russian Federation, Moscow, 119049; Kaliningrad, 236041

References

  1. Keat G. Ong, Maggie Paulose Craig A. Grime. A Wireless, Passive, Magnetically-soft Harmonic Sensor for Monitoring Sodium Hypochlorite Concentrations in Water // Sensors. 2003. V. 3. P. 11–18.
  2. Baglio S., Member S., Bulsara A.R., Andò B., La Malfa S., Marletta V., Trigona C., Longhini P., Kho A., In V., Neff J.D., Anderson G.W., Obra C.C., Meadows B.K., Palacios A. Exploiting Nonlinear Dynamics in Novel Measurement Strategies and Devices: From Theory to Experiments and Applications // IEEE Trans. Inst. Measurement. 2011. V. 60. No. 3. P. 667–695.
  3. Praslicka D., Blazek J., Smelko M., Hudak Jozef Cverha A., Mikita I., Varga R., Zhukov A. Possibilities of measuring stress and health monitoring in materials using contact-less sensor based on magnetic microwires // IEEE Trans. Magn. 2013. V. 49. P. 128–131.
  4. Churyukanova M., Kaloshkin S., Shuvaeva E., Stepashkin A., Zhdanova M., Aronin A., Aksenov O., Arakelov P., Zhukova V., Zhukov А. Non-contact method for stress monitoring based on stress dependence of magnetic properties of Fe-based microwires // J. Alloys Compounds. 2018. V. 748. P. 199–205.
  5. Zhukov A., Corte-Leon P., Gonzalez-Legarreta L., Ipatov M., Blanco J.M., Gonzalez A., Zhukova V. Advanced functional magnetic microwires for technological applications // J. Phys. D: Appl. Phys. 2022. V. 55. P. 253003.
  6. Kozejova D., Varga R. Bistable magnetic microwire for contactless sensor of intracranial pressure // J. Magn. Magn. Mater. 2023. V. 569. No. 170473.
  7. Hudák R., Varga R., Živčák J., Hudák J., Blažek J., Praslička D. Application of magnetic microwires in titanium implants–Conception of intelligent sensoric implant / Aspects of Computational Intelligence: Theory and Applications. Springer-Verlag, 2013. V. 2. P. 413–434.
  8. Hudak R., Polacek I., Klein P., Sabol R., Varga R., Zivcak J., Vazquez M. Nanocrystalline magnetic glass-coated microwires using the effect of superparamagnetism are usable as temperature sensors in biomedical applications // IEEE Trans. Magn. 2017. V. 53. P. 1–4.
  9. Sabol R., Varga R., Hudak J., Blazek J., Praslicka D., Vojtanik P., Badini G., Vazquez M. Stress dependence of the switching field in glass-coated microwires with positive magnetostriction // J. Magn. Magn. Mater. 2013. V. 325. P. 141–143.
  10. Sabol R., Rovnak M., Klein P., Vazquez M., Varga R. Mechanical Stress Dependence of the Switching Field in Amorphous Microwires // IEEE Trans. Magn. 2015. V. 51. P. 1–4.
  11. Vazquez M., Gomez-Polo C., Chen C.D.-X. Switching mechanism and domain structure of bistable amorphous wires // IEEE Trans. Magn. 1992 P. 3147–3149.
  12. Aragoneses P., Blanco J.M., Dominguez L., González J., Zhukov A., Vázquez M. The stress dependence of the switching field in glass-coated amorphous microwires // J. Phys. D Appl. Phys. 1998. V. 31. P. 3040–3045.
  13. Gleich B., Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles // Nature. 2005. V. 435. P. 1214–1217.
  14. Wu L.C., Zhang Y., Steinberg G., Qu H., Huang S., Cheng M., Bliss T., Du F., Rao J., Song G., Pisani L., Doyle T., Conolly S., Krishnan K., Grant G., Wintermark M.A. A Review of Magnetic Particle Imaging and Perspectives on Neuroimaging // Am. J. Neuroradiol. 2019. V. 40. P. 206–212.
  15. Chiriac H., Óvári T.A. Amorphous glass-covered magnetic wires: preparation, properties, applications // Prog. Mater. Sci. 1996. V. 40. P. 333–407.
  16. Zhukov A., Chichay K., Talaat A., Rodionova V., Blanco J.M., Ipatov M., Zhukova V. Manipulation of magnetic properties of glass-coated microwires by annealing // J. Magn. Magn. Mater. 2015. V. 383. P. 232–236.
  17. Zhukov A., Churyukanova M., Kaloshkin S., Sudarchikova V., Gudoshnikov S., Ipatov M., Talaat A., Blanco J.M., and Zhukova V. Magnetostriction of Co–Fe-based amorphous soft magnetic microwires // J. Electron. Mater. 2016. V. 45. P. 226–234.
  18. Nematov M.G., Baraban I., Yudanov N.A., Rodionova V., Qin F.X., Peng H.X., Panina L.V. Evolution of the magnetic anisotropy and magnetostriction in Co-based amorphous alloys microwires due to current annealing and stress-sensory applications // J. Alloys Compounds. 2020. V. 837. P. 155584.
  19. Hudak J., Blazek J., Cverha A., Gonda P., Varga R. Improved Sixtus–Tonks method for sensing the domain wall propagation direction // Sensors and Actuators A: Physical. 2009. V. 156(2). P. 292–295.
  20. Antonov A.S., Borisov V.T., Borisov O.V., Prokoshin A.F., Usov N.A. Residual quenching stresses in glass-coated amorphous ferromagnetic microwires. // J. Phys. D: Appl. Phys. 2000. V. 33. P. 1161–1168.
  21. Barandiarán J.M., Hernando A., Madurga V., Nielsen O.V., Vázquez M., Vázquez-López M. Temperature, stress, and structural-relaxation dependence of the magnetostriction in (Co0.94/BFe0.06)75/BSi15 B10 glasses // Phys. Rev. B. 1987. V. 35. P. 5066.
  22. Zhukova V., Blanco J.M., Rodionova V., Ipatov M., Zhukov A. Domain wall propagation in micrometric wires: limits of single domain wall regime // J. Appl. Phys. 2012. V. 111. P. 07E311.
  23. Panina L.V., Ipatov M., Zhukova V., Zhukov A. Domain wall propagation in Fe-rich amorphous microwires // Physica B. 2012. V. 407. P. 1442–1445.
  24. Hubert A., Schafer R. Magnetic Domains. Berlin: Springer-Verlag, 1998.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Photo of a flat coil (a); switching circuits of magnetizing and detecting coils, respectively (b, c).

Download (9KB)
3. Fig. 2. Distribution of the z-components of the magnetic field created by magnetizing coils at a current value of 1 A. The x–axis is in the plane of the coil, the z–axis is perpendicular to the plane.

Download (14KB)
4. Fig. 3. Magnetic hysteresis loops of microconductors of the compositions Co71Fe5B11Si10Cr3 (sample No. 1 – a) and Co66.6Fe4.28B11.51Si14.48Ni1.44Mo1.69 (sample No. 2 – b) for various external voltages.

Download (28KB)
5. Fig. 4. The velocity of propagation of DG along the axis of the micropipe composition Co71Fe5B11Si10Cr3 (sample No. 1) as a function of the magnetic field for different values of applied voltages. The data are given for several magnetic field frequencies (340, 500, 1000 Hz). The insert shows the shape of the induced signal in one of the detecting coils at a field of 750 A/m and a frequency of 500 Hz.

Download (22KB)
6. Fig. 5. Dependence of the amplitude of the higher harmonics (No. 21, 23) on mechanical stresses for a signal induced by a moving DG in a field of 385 A/m (frequency – 500 Hz).

Download (14KB)
7. Fig. 6. Spectral characteristics of a microconductor of the composition Co71Fe5B11Si10Cr3 (sample No. 1) when magnetized by a flat coil creating a different magnitude of the magnetic field in the center of the coil: (a), (b) – 325 A/m, (c), (d) – 560 A/m for various values of applied voltages. Figures (b) and (d) show the dependences on mechanical stresses for specific harmonics No. 17 and 23. The field frequency is 500 Hz. Normalized amplitudes by the magnitude of the 3rd harmonic (A/A3) are presented.

Download (55KB)
8. Fig. 7. Dependence of the harmonic amplitude No. 11 on mechanical stresses for a microwire of the composition Co66.6Fe4.28B11.51Si14.48Ni1.44Mo1.69 when magnetized by a flat coil creating a field value in the center of the coil of 325 A/ m, frequency 500 Hz. Normalized amplitudes by the magnitude of the 3rd harmonic (A/A3) are presented.

Download (8KB)