Fabrication of submicron CoFeB/MgO/CoFeB magnetic tunnel junction using a resistive mask HSQ/PMMA

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The technology of manufacturing magnetic tunnel junctions based on CoFeB/MgO/CoFeB layers with characteristic lateral dimensions from 200 to 700 nm using a combination of HSQ/PMMA electronic resistors has been developed. To study the processes of magnetization reversal in the obtained samples, measurements of magnetoresistance curves were carried out. It is shown that, depending on the structure of the magnetically sensitive layer and the geometric parameters of the TMR contacts, elements with both vortex and quasi-homogeneous distribution of the magnetization of the free layer are realized. At the same time, in the latter, the width of the magnetization reversal front is from 2 to 6 Oe.

Full Text

Restricted Access

About the authors

I. A. Fedotov

Institute for Physics of Microstructures of the Russian Academy of Sciences

Author for correspondence.
Email: fedotov@ipmras.ru
Russian Federation, Nizhny Novgorod, 603950

I. Yu. Pashen’kin

Institute for Physics of Microstructures of the Russian Academy of Sciences

Email: fedotov@ipmras.ru
Russian Federation, Nizhny Novgorod, 603950

E. V. Skorokhodov

Institute for Physics of Microstructures of the Russian Academy of Sciences

Email: fedotov@ipmras.ru
Russian Federation, Nizhny Novgorod, 603950

N. S. Gusev

Institute for Physics of Microstructures of the Russian Academy of Sciences

Email: fedotov@ipmras.ru
Russian Federation, Nizhny Novgorod, 603950

References

  1. He G., Zhang Y. and Xiao G. Nonhysteretic Vortex Magnetic Tunnel Junction Sensor with High Dynamic Reserve // Phys. Rev. Applied. 2020. V. 14. P. 034051.
  2. Endo M., Al-Mahdawi M., Oogane M. and Ando Y. Control of sensitivity in vortex-type magnetic tunnel junction magnetometer sensors by the pinned layer geometry // J. Phys. D: Appl. Phys. 2022. V. 55. P. 195001.
  3. Yuasa S. and Djayaprawira D. Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO (001) barrier. // J. Phys. D: Appl. Phys. 2007. V. 40. P. 337.
  4. Yuasa S., Nagahama T., Fukushima A., Suzuki Y. and Ando K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions // Nature Mater. 2004. V. 3. P. 868.
  5. Lehndorff R., Bürgler D.E., Gliga S., Hertel R., Grünberg P., Schneider C.M., Celinski Z. Magnetization dynamics in spin torque nano-oscillators: Vortex state versus uniform state // Phys. Rev. B. 2009. V. 80. P. 054412.
  6. Dussaux A., Georges B., Grollier J., Cros V., Khvalkovskiy A.V., Fukushima A., Konoto M., Kubota H., Yakushiji K., Yuasa S., Zvezdin K.A., Ando K., Fert A. Large microwave generation from current-driven magnetic vortex oscillators in magnetic tunnel junctions // Nature Commun. 2010. V. 1. P. 1.
  7. Devolder T., Bianchini L., Joo-Von Kim, Crozat P., Chappert C., Cornelissen S., Op de Beeck M., Lagae L. Auto-oscillation and narrow spectral lines in spin-torque oscillators based on MgO magnetic tunnel junctions // J. Appl. Phys. 2009. V. 106. P. 103921.
  8. Миронов В.Л., Татарский Д.А., Фраерман А.А. Синхронизация автоколебаний обменно-связанных магнитных вихрей // ФММ. 2022. Т. 64. С. 1328–1332.
  9. Locatelli N., Hamadeh A., Abreu Araujo F., Belanovsky A.D., Skirdkov P.N., Lebrun R., Naletov V.V., Zvezdin K.A., Munoz M., Grollier J., Klein O., Cros V. and De Loubens G. // Efficient Synchronization of Dipolarly Coupled Vortex-Based Spin Transfer Nano-Oscillators // Sci Rep. 2015. V. 5. P. 17039.
  10. Скороходов Е.В., Татарский Д.А., Горев Р.В., Миронов В.Л., Фраерман А.А. Гиротропные колебания магнитных вихрей в двух взаимодействующих ферромагнитных дисках // Письма в ЖЭТФ. 2023. Т. 117. С. 165–170.
  11. Andre T.W., Nahas J.J., Subramanian C.K., Garni B.J., Lin H.S., Omair A. and Martino W.L. A 4-Mb 0.18-/spl mu/m 1T1MTJ toggle MRAM with balanced three input sensing scheme and locally mirrored unidirectional write drivers // IEEE Journal of Solid-State Circuits. 2005. V. 40. P. 301–309.
  12. Engel B.N., Akerman J., Butcher B., Dave R.W., DeHerrera M., Durlam M., Grynkewich G., Janesky J., Pietambaram S.V., Rizzo N.D., Slaughter J.M., Smith K., Sun J.J. and Tehrani S. A 4-Mb toggle MRAM based on a novel bit and switching method // IEEE Trans. Magn. 2005. V. 41. P. 132.
  13. Oh S.C., Park S.Y., Manchon A. et al. Bias-voltage dependence of perpendicular spin-transfer torque in asymmetric MgO-based magnetic tunnel junctions // Nature Phys. 2009. V. 5. P. 898–902.
  14. Sankey J.C., Cui Y.T., Sun J.Z., Slonczewski J.C., Buhrman R.A. and Ralph D.C. Measurement of the spin-transfer-torque vector in magnetic tunnel junctions // Nature Phys. 2007. V. 4. P. 67–71.
  15. Alzate J.G., Amiri P.Kh., Upadhyaya P., Cherepov S.S., Zhu J., Lewis M., Dorrance R., Katine J.A., Langer J., Galatsis K., Markovic D., Krivorotov I. and Wang K.L. Voltage-induced switching of nanoscale magnetic tunnel junctions. // IEEE International Electron Devices Meeting. 2012. P. 29.5.1. – 29.5.4.
  16. Alzate J.G., Amiri P.Kh., Yu G., Upadhyaya P., Katine J.A., Langer J., Ocker B., Krivorotov I.N. and Wang K.L. Temperature dependence of the voltage-controlled perpendicular anisotropy in nanoscale MgO|CoFeB|Ta magnetic tunnel junctions // Appl. Phys. Lett. 2014. V. 104. P. 112410.
  17. Wang W.G., Li M., Hageman S. and Chien. C.L. Electric-field-assisted switching in magnetic tunnel junctions // Nature Mater. 2012. V. 11. P. 64–68.
  18. Пашенькин И.Ю., Сапожников М.В., Гусев Н.С., Рогов В.В., Татарский Д.А., Фраерман А.А., Волочаев М.Н. Магнитоэлектрический эффект в туннельных магниторезистивных контактах CoFeB/MgO/CoFeB // Письма в ЖЭТФ. 2020. Т. 111. С. 815–818.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The initial multilayer nanostructure for the formation of TMR contacts with quasi-homogeneous (a) and vortex (b) magnetization distribution of the free layer, thicknesses in nm are indicated in parentheses.

Download (45KB)
3. Fig. 2. Formation of electrical insulation by spraying a Ta2O5 dielectric (a); the process of explosive lithography (b, c); image of TMR contacts after electrical insulation and opening windows in the dielectric, obtained in a scanning electron microscope (d).

Download (48KB)
4. Fig. 3. Sections of magnetoresistance curves corresponding to the process of remagnetization of a quasi-homogeneous free ferromagnetic layer for a single TMR contact with lateral dimensions: a) 2×4 microns; b) 200×400 nm.

Download (29KB)
5. Fig. 4. Magnetoresistance curves of a chain of 5 round TMR contacts with a diameter of about 700 nm and a vortex distribution of the magnetization of the free layer.

Download (25KB)