Magnetization Processes of Exchange Coupled Nd2(Fe,Co)14B Alloys in Various Demagnetized States
- Authors: Alekseev I.V.1, Andreev S.V.1, Volegov A.S.1, Selezneva N.V.1
-
Affiliations:
- Ural Federal University named after the First President of Russia B.N. Yeltsin
- Issue: Vol 125, No 3 (2024)
- Pages: 270-279
- Section: ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА
- URL: https://innoscience.ru/0015-3230/article/view/662772
- DOI: https://doi.org/10.31857/S0015323024030042
- EDN: https://elibrary.ru/WUBQHC
- ID: 662772
Cite item
Abstract
Processes of magnetization in exchange-coupled rapidly quenched nanocrystalline alloys Nd2(Fe1-xCox)14B, where x = 0, 0.07, 0.2, 0.5, have been studied. Initial magnetization curves and interaction plots δM(H) for various demagnetized states were obtained. Based on comparison of measurement results, influence of the pinning type mechanism on magnetization process in the Nd2(Fe1-xCox)14B melt-spun ribbons is shown. Using δM(H) plots, change in intergrain exchange interaction depending on cobalt concentration in rapidly quenched Nd2(Fe1-xCox)14B nanocrystalline alloys was investigated.
About the authors
I. V. Alekseev
Ural Federal University named after the First President of Russia B.N. Yeltsin
Author for correspondence.
Email: alekseeviv.work@gmail.com
Russian Federation, Ekaterinburg, 620002
S. V. Andreev
Ural Federal University named after the First President of Russia B.N. Yeltsin
Email: alekseeviv.work@gmail.com
Russian Federation, Ekaterinburg, 620002
A. S. Volegov
Ural Federal University named after the First President of Russia B.N. Yeltsin
Email: alekseeviv.work@gmail.com
Russian Federation, Ekaterinburg, 620002
N. V. Selezneva
Ural Federal University named after the First President of Russia B.N. Yeltsin
Email: alekseeviv.work@gmail.com
Russian Federation, Ekaterinburg, 620002
References
- Herbst J.F. R2Fe14B materials: Intrinsic properties and technological aspects // Rev. Modern Physics. 1991. V. 63. № 4. P. 819–898.
- Matsuura Y. Recent development of Nd–Fe–B sintered magnets and their applications // J. Magn. Magn. Mater. 2006. V. 303. № 2. P. 344–347.
- Volegov A.S., Andreev S.V., Selezneva N.V., Ryzhikhin I.A., Kudrevatykh N.V., Mädler L., Okulov I.V. Additive manufacturing of heavy rare earth free high-coercivity permanent magnets // Acta Mater. 2020. V. 188. P. 733–739.
- Bolyachkin A.S., Ruta S., Chantrell R.W., Woodcock T.G., Andreev S.V., Selezneva N.V., Volegov A.S. Characterisation of high-anisotropy nanocrystalline alloys based on magnetic susceptibilities in the remanent state // J. Magn. Magn. Mater. 2019. V. 486. P. 165270.
- Bolyachkin A.S., Alekseev I.V., Andreev S.V., Volegov A.S. δM plots of nanocrystalline hard magnetic alloys // J. Magn. Magn. Mater. 2021. V. 529. P. 167886.
- Hono K., Sepehri-Amin H. Strategy for high-coercivity Nd–Fe–B magnets // Scripta Mater. 2012. V. 67. № 6. P. 530–535.
- Hussain M., Liu J., Zhao L.Z., Zhong X.C., Zhang G.Q., Liu Z.W. Composition related magnetic properties and coercivity mechanism for melt spun [(La0.5Ce0.5)1-xREx]10Fe84B6 (RE = Nd or Dy) nanocomposite alloys // J. Magn. Magn. Mater. 2016. V. 399. P. 26–31.
- Hadjipanayis G.C., Lawless K.R., Dickerson R.C. Magnetic hardening in iron‐neodymium‐boron permanent magnets // J. Appl. Phys. 1985. V. 57. № 8. P. 4097–4099.
- Hadjipanayis G.C., Kim A. Domain wall pinning versus nucleation of reversed domains in R‐Fe‐B magnets // J. Appl. Phys. 1988. V. 63. № 8. P. 3310–3315.
- Pinkerton F.E., Van Wingerden D.J. Magnetization process in rapidly solidified neodymium‐iron‐boron permanent magnet materials // J. Appl. Phys. 1986. V. 60. № 10. P. 3685–3690.
- Liu Z.W., Davies H.A. Intergranular exchange interaction in nanocrystalline hard magnetic rare earth–iron–boron-based melt-spun alloy ribbons // J. Phys. D: Appl. Phys. 2009. V. 42. № 14. P. 145006.
- Grönefeld M., Kronmüller H. Initial magnetization curve and hardening mechanism in rapidly quenched Nd-Fe-B magnets // J. Magn. Magn. Mater. 1990. V. 88. № 3. P. L267–L274.
- Betancourt J.I., Davies H.A. Coercivity mechanism in nanophase (Nd–Pr)–Fe–B melt spun alloys // Physica B: Condensed Matter. 2002. V. 320. № 1–4. P. 294–296.
- Gavigan J.P., Givord D. Intrinsic and extrinsic properties of rare earth-transition metal compounds and permanent magnets // J. Magn. Magn. Mater. 1990. V. 84. № 3. P. 288–298.
- Chu K.T., Jin Z.Q., Chakka V.M., Liu J.P. Rapid magnetic hardening by rapid thermal annealing in NdFeB-based nanocomposites // J. Phys. D: Appl. Phys. 2005. V. 38. № 22. P. 4009–4014.
- Kelly P.E., O'grady K., Mayo P.I., Chantrell R.W. Switching mechanisms in cobalt-phosphorus thin films // IEEE Trans. Magn. 1989. V. 25. № 5. P. 3881–3883.
- Волегов А.С. Межзеренное обменное взаимодействие в наноструктурированных сплавах системы РЗМ-3d-металл-бор и его роль в формировании их фундаментальных и гистерезисных магнитных свойств / Дис. ... канд. физ.-мат. наук. 2012. C. 160.
- Thamm S., Hesse J. The remanence of a Stoner–Wohlfarth particle ensemble as a function of the demagnetisation process // J. Magn. Magn. Mater. 1998. V. 184. № 2. P. 245–255.
- Skomski R. Nanomagnetics // Journal of Physics: Condensed Matter. 2003. V. 15. P. R841–R896.
- Mishra R.K. Microstructure of melt-spun Nd–Fe–B magnequench magnets // J. Magn. Magn. Mater. 1986. V. 54. P. 450–456.
- Givord D., Lu Q., Rossignol M.F., Tenaud P., Viadieu T. Experimental approach to coercivity analysis in hard magnetic materials // J. Magn. Magn. Mater. 1990. V. 83. № 1–3. P. 183–188.
- Vajda F., Della Torre E., McMichael R.D. Demagnetized‐state dependence of Henkel plots. I. The Preisach model // J. Appl. Phys. 1994. V. 75. № 10. P. 5689–5691.
- Panagiotopoulos I., Withanawasam L., Hadjipanayis G.C. “Exchange spring” behavior in nanocomposite hard magnetic materials // Journal of magnetism and magnetic materials. 1996. V. 152. № 3. P. 353–358.
- Gao R.W., Zhang D.H., Li W., Li X.M., Zhang J.C. Hard magnetic property and δM (H) plot for sintered NdFeB magnet // J. Magn. Magn. Mater. 2000. V. 208. № 3. P. 239–243.
- Wang C., Yan M., Zhang W.Y. Effects of Nb and Zr additions on crystallization behavior, microstructure and magnetic properties of melt-spun (Nd, Pr)2Fe14B/α-Fe alloys // J. Magn. Magn. Mater. 2006. V. 306. № 2. P. 195–198.
- Alekseev I.V., Andreev S.V., Volegov A.S. Magnetic viscosity dependence of δM plots for a NdFeB-based alloy // AIP Conference Proceedings. 2019. V. 2174. № 1. P. 020080.
- Hirosawa S., Tokuhara K., Yamamoto H., Fujimura S., Sagawa M., Yamauchi H. Magnetization and magnetic anisotropy of R2Co14B and Nd2(Fe1–xCox)14B measured on single crystals // J. Appl. Phys. 1987. V. 61. № 8. P. 3571–3573.
- Pedziwiatr A.T., Wallace W.E. Spin reorientations in R2Fe14-xCoxB systems (R = Pr, Nd and Er) // J. Magn. Magn. Mater. 1987. V. 65. № 1. P. 139–144.
- Deppe P., Rosenberg M., Hirosawa S., Sagawa M. A 57Fe Mössbauer study of Nd2(Fe1–xCox)14B // J. Appl. Phys. 1987. V. 61. № 8. P. 4337–4339.
- Gavigan J.P., Givord D., Li H.S., Voiron J. 3d magnetism in R-M and R2M14B compounds (M = Fe, Co; R = rare earth) // Physica B+C. 1988. V. 149. № 1–3. P. 345–351.
- Kim T.H., Lee S.R., Lee M.W., Jang T.S., Kim J.W., Kim Y.D., Kim H.J. Dependence of magnetic, phase-transformation and microstructural characteristics on the Cu content of Nd–Fe–B sintered magnet // Acta Mater. 2014. V. 66. P. 12–21.
- Liu J., Sepehri-Amin H., Ohkubo T., Hioki K., Hattori A., Schrefl T., Hono K. Effect of Nd content on the microstructure and coercivity of hot-deformed Nd–Fe–B permanent magnets // Acta Materialia. 2013. V. 61. № 14. P. 5387–5399.
- Sasaki T.T., Ohkubo T., Hono K. Structure and chemical compositions of the grain boundary phase in Nd–Fe–B sintered magnets // Acta Mater. 2016. V. 115. P. 269–277.
- Kim T.H., Lee S.R., Bae K.H., Kim H.J., Lee M.W., Jang T.S. Effects of Al/Cu co-doping on crystal structure and chemical composition of Nd-rich phases in Nd–Fe–B sintered magnet // Acta Mater. 2017. V. 133. P. 200–207.
- Bissell P.R., Chantrell R.W., Tomka G.J., Knowles J.E., Sharrock M.P. Remanent magnetisation and demagnetisation measurements on particulate recording media // IEEE Trans. Magn. 1989. V. 25. № 5. P. 3650–3652.
- Fearon M., Chantrell R.W., Wohlfarth E.P. A theoretical study of interaction effects on the remanence curves of particulate dispersions // Journal of Magn. Magn. Mater. 1990. V. 86. № 2–3. P. 197–206.
Supplementary files
