Simulation of the Evolution of Phase Composition and Austenite Grain Size upon Multi-Pass Hot Deformationof Low-Alloy Steels

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents a model for predicting the structural characteristics and phase composition of low-alloy steels upon hot rolling in the multi-pass deformation mode. The model considers recovery, dynamic, primary, dynamic and static recrystallization of grains, and the normal grain growth, as well as nucleation (including accelerated nucleation during deformation), growth or dissolution, and coarsening of carbonitride particles. The comparison between the calculated results and the experimental data available in the publications shows a satisfactory agreement.

About the authors

I. I. Gorbachev

Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: gorbachev@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

E. I. Korzunova

Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: gorbachev@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

V. V. Popov

Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: gorbachev@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

D. M. Khabibulin

Ausferr Research and Technology Center

Email: gorbachev@imp.uran.ru
Russian Federation, Magnitogorsk, 455000

N. V. Urtsev

Ausferr Research and Technology Center

Email: gorbachev@imp.uran.ru
Russian Federation, Magnitogorsk, 455000

References

  1. Siwecki T., Sandberg A., Roberts W. Processing characteristics and properties of Ti-V-N steels / Reprint of papers on vanadium steel from the proceedings of “ASM HSLA Steels Technology and Applications Conference, Philadelphia, USA, Oct. 1983. P. 63–78.
  2. Abad R., Fernández A.I., López B., Rodriguez-Ibabe J.M. Interaction between recrystallization and precipitation during multipass rolling in a low carbon niobium microalloyed steel // ISIJ International. 2001. V. 41. № 11. P. 1373–1382. https://doi.org/10.2355/isijinternational.41.1373
  3. Chen S., Li L., Peng Zh., Huo X, Gao J. Strain-induced precipitation in Ti microalloyed steel by two-stage controlled rolling process // JMR&T. 2020. V. 9. № 6. P. 15759–15770. https://doi.org/10.1016/j.jmrt.2020.11.040
  4. Dutta B., Sellars C.M. Effect of composition and process variables on Nb(C, N) precipitation in niobium microalloyed austenite // Mater. Sci. Techn. 1987. V. 3. № 3. P. 197–206. https://doi.org/10.1179/mst.1987.3.3.197
  5. Dutta B., Valdes E., Sellars C.M. Mechanism and kinetics of strain induced precipitation of Nb(C, N) in austenite // Acta Metal. Mater. 1992. V. 40. № 4. P. 653–662. https://doi.org/10.1016/0956-7151(92)90006-Z
  6. Siwecki T. Modelling of microstructure evolution during recrystallization controlled rolling // ISIJ International. 1992. V. 32. № 3. P. 368376. https://doi.org/10.2355/isijinternational.32.368
  7. Avrami M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei// J. Chem. Phys. V. 8. P. 212–224. https://doi.org/10.1063/1.1750631
  8. Hellman P, Hillert M. On the effect of second-phase particles on grain growth // Scand. J. Metall. 1975. V. 4. P. 211–219.
  9. Shen B., Zhu S.H., Zhang H.H. Microstructure evolution in Nb–Ti micro-alloyed steel during hot compression and hot rolling simulation // Appl. Mech. Mater. 2013. V. 395–396. P. 342–347. https://doi.org/10.4028/www.scientific.net/AMM.395-396.342
  10. Siciliano F., Jr. Mathematical modeling of the hot strip rolling of Nb microalloyed steels / Ph.D. Thesis, McGill University, Montreal. 1999. 165 p.
  11. Dutta B., Palmiere E.J., Sellars C.M. Modelling the kinetics of strain induced precipitation in Nb microalloyed steels // Acta Materialia. 2001. V. 49. № 5. P. 785–794. https://doi.org/10.1016/S1359-6454(00)00389-X
  12. Sellars C.M., Palmiere E.J. Modelling Strain Induced Precipitation of Niobium Carbonitride during Multipass Deformation of Austenite // Mater. Sci. Forum. 2005. V. 500–501. P. 3–14. https://doi.org/10.4028/www.scientific.net/MSF.500-501.3
  13. Nagarajan V., Palmiere E.J., Sellars C.M. New approach for modelling strain induced precipitation of Nb(C, N) in HSLA steels during multipass hot deformation in austenite // Mater. Sci. Techn. 2009. V. 25. № 9. P. 1168–1174. https://doi.org/10.1179/174328409X455242
  14. Lin X., Zou X., An D., Krakauer B.W., Zhu M. Multi-scale modeling of microstructure evolution during multi-pass hot-rolling and cooling process // Materials. 2021. V. 14. № 11:2947. https://doi.org/10.3390/ma14112947
  15. Sandström R., Lagneborg R. A model for hot working occurring by recrystallization // Acta Metall. 1975. V. 23. P. 387–398. https://doi.org/10.1016/0001–6160(75)90132–7
  16. Madej L., Sitko M., Pietrzyk M. Perceptive comparison of mean and full field dynamic recrystallization models // Arch. Civil Mechan. Eng. 2016. V. 16. № 4. P. 801–813. https://doi.org/10.1016/j.acme.2016.03.010.
  17. Roucoules C., Pietrzyk M., Hodgson P.D. Analysis of work hardening and recrystallization during the hot working of steel using a statistically based internal variable model // Materials Science and Engineering: A. 2003. V. 339. № 1–2. P. 1–9. https://doi.org/10.1016/S0921-5093(02)00120-X.
  18. Timoshenkov A., Warczok P., Albu M., Klarner J., Kozeschnik E., Bureau R., Sommitsch C. Modelling the dynamic recrystallization in C–Mn micro-alloyed steel during thermo-mechanical treatment using cellular automata // Comput. Mater. Sci. 2014. V. 24. P. 85–94. https://doi.org/10.1016/j.commatsci.2014.02.017
  19. Buken H., Kozeschnik E. A model for static recrystallization with simultaneous precipitation and solute drag // Metall. Mater. Trans. A. 2017. V. 48. P. 2812–2818. https://doi.org/10.1007/s11661-016-3524-5
  20. Горбачев И.И., Пасынков А.Ю., Попов В.В. Моделирование влияния горячей деформации на размер аустенитного зерна низколегированных сталей с карбонитридным упрочнением // ФММ. 2018. Т. 119. № 6. С. 582–589. https://doi.org/10.1134/S0031918X18060078
  21. Горбачев И.И., Пасынков А.Ю., Попов В.В. Моделирование эволюции карбонитридных частиц сложного состава при горячей деформации низколегированной стали // ФММ. 2018. Т. 119. № 8. С. 817–826. https://doi.org/10.1134/S0031918X18080021
  22. Горбачев И.И., Корзунова Е.И., Попов В.В., Хабибулин Д.М., Урцев Н.В. Модель для прогнозирования размера аустенитного зерна при горячей деформации низколегированных сталей с учетом эволюции дислокационной структуры // ФММ. 2023. Т. 124. № 12. С. 1244–1252.
  23. Ding R., Guo Z.X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization // Acta Materialia. 2001. V. 49. № 10. P. 3163–3175. https://doi.org/10.1016/S1359-6454(01)00233-6
  24. Humphreys F.J., Hatherly M. Recrystallization and related annealing phenomena. 2nd ed. Oxford: Elsevier, 2004. 574 p. https://doi.org/10.1016/B978-0-08-044164-1.X5000-2
  25. Gladman T. On the theory of the effect of precipitate particles on grain growth in metals // Proc. R. Soc. Lond. A. 1966. V. 294. P. 298–309. https://doi.org/10.1098/rspa.1966.0208
  26. Estrin Y., Mecking H. A unified phenomenological description of work hardening and creep based on one-parameter models // Acta Metall. 1984. V. 32. № 1. P. 57–70. https://doi.org/10.1016/0001-6160(84)90202-5
  27. Sandström R. Subgrain growth occurring by boundary migration // Acta Metal. 1977. V. 25. № 8. P. 905–911. https://doi.org/10.1016/0001-6160(77)90177-8
  28. Roberts W., Ahlblom B. A nucleation criterion for dynamic recrystallization during hot working // Acta Metal. 1978. V. 26. № 5. P. 801–813. https://doi.org/10.1016/0001–6160(78)90030–5
  29. Zener C., Hollomon J.H. Effect of strain rate upon plastic flow of steel // J. Appl. Phys. 1944. V. 15. № 12. P. 22–32. https://doi.org/10.1063/1.1707363
  30. Zurob H.S., Y. Bréchet Y., Dunlop J. Quantitative criterion for recrystallization nucleation in single-phase alloys: Prediction of critical strains and incubation times // Acta Mater. 2006. V. 54. № 15. P. 3983–3990. https://doi.org/10.1016/j.actamat.2006.04.028
  31. Горбачев И.И., Попов В.В., Пасынков А.Ю. Моделирование эволюции выделений двух карбонитридных фаз в сталях с Nb и Ti при изотермическом отжиге // ФММ. 2013. Т. 114. № 9. С. 807–817. https://doi.org/10.1134/S0031918X13090068
  32. Popov V.V., Gorbachev I.I., Pasynkov A.Yu. Simulation of precipitates evolution in multiphase multicomponent systems with consideration of nucleation // Philosoph. Mag. 2016. V. 96. № 35. P. 3632–3653. https://doi.org/10.1080/14786435.2016.1232867
  33. Lukas H.L., Fries S.G., Sundman B. Computational Thermodynamics: The Calphad Method. Cambridge University Press: The Edinburgh Building, Cambridge CB2 8RU, UK, 2007. https://doi.org/10.1017/CBO9780511804137
  34. Sundman B. A regular solution model for phases with several components and sublattices, suitable for computer applications // J. Phys. Chem. Solids. 1981. V. 42. № 4. P. 297–301. https://doi.org/10.1016/0022-3697(81)90144-X
  35. Горбачев И.И., Попов В.В., Пасынков А.Ю. Термодинамическое моделирование карбонитридообразования в сталях с Nb и Ti // Физика металлов и металловедение. 2012. Т. 113. № 7. С. 727–735.
  36. Liu W.J., Jonas J. Characterisation of critical nucleus/matrix interface: Application to Cu–Co alloys and microalloyed austenite // Mater. Sci. Technol. 1989. V. 5. P. 8–12. https://doi.org/10.1179/mst.1989.5.1.8
  37. Banerjee K., Militzer M., Perez M., Wang X. Nonisothermal austenite grain growth kinetics in a microalloyed X80 linepipe steel // Metal. Mater. Trans. A. 2010. V. 41A. № 12. P. 3161–3172. https://doi.org/10.1007/s11661-010-0376-2
  38. Uhm S., Moon J., Lee Ch., Yoon J., Lee B. Prediction model for the austenite grain size in the coarse grained heat affected zone of Fe-C–Mn steels: Considering the effect of initial grain size on isothermal growth behavior // ISIJ International. 2004. V. 44. № 7. P. 1230–1237. https://doi.org/10.2355/isijinternational.44.1230
  39. Pietrzyk M. Through-process modelling of microstructure evolution in hot forming of steels // J. Mater. Proces. Techn. 2002. V. 125–126. P. 53–62. https://doi.org/10.1016/S0924-0136(02)00285-6
  40. Hillert M. On the theory of normal and abnormal grain growth // Acta Met. 1965. V. 13. P. 227–238. https://doi.org/10.1016/0001-6160(65)90200-2
  41. Rios P.R. Overview no. 62: A theory for grain boundary pinning by particles // Acta Metal. 1987. V. 35. № 12. P. 2805–2814. https://doi.org/10.1016/0001-6160(87)90280-X
  42. Liu W.J., Jonas J. Nucleation kinetics of Ti carbonitride in microalloyed austenite // Metall. Trans. 1989. V. A 20. P. 689–697. https://doi.org/10.1007/BF02667586
  43. Gorbachev I., Popov V. Thermodynamic simulation of solidification of Ti-containing steels with consideration for possibility of peritectic transformation and second phase precipitation // Metals. 2023. V. 13. № 1. 41. https://doi.org/10.3390/met13010041
  44. Maalekian M., Radis R., Militzer M., Moreau A., Poole W.J. In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel //Acta Mater. 2012. V. 60. P. 1015–1026. https://doi.org/10.1016/j.actamat.2011.11.016
  45. Khalaj G., Yoozbashizadeh H., Khodabandeh A., Tamizifar M. Austenite grain growth modelling in weld heat affected zone of Nb/Ti microalloyed linepipe Steel // Mater. Sci. Тechn. 2014. V. 30. № 2. P. 424–433. https://doi.org/10.1179/1743284713Y.0000000364
  46. Sarkar S., Moreau A., Militzer M., Poole W.J. Evolution of austenite recrystallization and grain growth using laser ultrasonics // Metal. Mat. Trans. A. 2008. V. 39. P. 897–907. https://doi.org/10.1007/s11661-007-9461-6.
  47. Kuhlmann-Wilsdorf D. A New Theory of Linear Workhardening // Intern. J. Mater. Research. 1962. V. 53. № 5. P. 324–325. https://doi.org/10.1515/ijmr-1962-530510

Supplementary files

Supplementary Files
Action
1. JATS XML