Связь магнетизма сплавов 3d-металлов с электронной структурой в теории Стонера и в ДТСФ

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Исследуется зависимость магнитных свойств: температуры Кюри, среднего и локального магнитных моментов – от типа кристаллической решетки и среднего числа d-электронов на атом. Проблема рассматривается в двух приближениях: без учета спиновых флуктуаций, в теории среднего поля Стонера, и с учетом спиновых флуктуаций, в динамической теории спиновых флуктуаций (ДТСФ). В ДТСФ получен аналог кривой Слэтера-Полинга для среднего магнитного момента при конечных температурах. Численные результаты в ДТСФ находятся в качественном согласии с экспериментом: магнитной фазовой диаграммой и зависимостью магнитного момента от концентрации в ферромагнитных сплавах.

Full Text

Restricted Access

About the authors

Н. Б. Мельников

Московский государственный университет им. М.В. Ломоносова

Author for correspondence.
Email: melnikov@cs.msu.ru
Russian Federation, Ленинские горы, Москва, 119991

А. С. Гуленко

Московский государственный университет им. М.В. Ломоносова

Email: melnikov@cs.msu.ru
Russian Federation, Ленинские горы, Москва, 119991

Б. И. Резер

Институт физики металлов УрО РАН

Email: melnikov@cs.msu.ru
Russian Federation, ул. С. Ковалевской, 18, Екатеринбург, 620108

References

  1. Köbler U. Sample-size dependent temperature dependence of the spontaneous magnetization // J. Magn. Magn. Mater. 2019. V. 491. P. 165632.
  2. Leedahl B., Korolev A.V., Zhidkov I.S., Skornyakov S.L., Anisimov V.I., Belozerov A.S., Kukharenko A.I., Kurmaev E.Z., Grokhovskii V.I., Cholakh S.O., Moewes A. Searching for pure iron in nature: the Chelyabinsk meteorite // RSC Adv. 2016. V. 6. P. 85844–85851.
  3. Mushnikov N., Popov A., Gaviko V., Protasov A., Kleinerman N., Golovnya O., Naumov S. Peculiarities of phase diagram of Fe-Ni system at Ni concentrations 0–20 at.% // Acta Mater. 2022. V. 240. P. 118330.
  4. Lichtenstein A.I., Katsnelson M.I., Kotliar G. Finite-temperature magnetism of transition metals: An ab initio dynamical mean-field theory // Phys. Rev. Lett. 2001. V. 87. P. 067205.
  5. Kakehashi Y. Modern Theory of Magnetism in Metals and Alloys. Berlin: Springer, 2013.
  6. Belozerov A.S., Leonov I., Anisimov V.I. Magnetism of iron and nickel from rotationally invariant Hirsch-Fye quantum Monte Carlo calculations // Phys. Rev. B. 2013. V. 87. P. 125138.
  7. Ruban A.V., Khmelevskyi S., Mohn P., Johansson B. Temperature-induced longitudinal spin fluctuations in Fe and Ni // Phys. Rev. B. 2007. V. 75. P. 054402.
  8. Gambino D., Brännvall M.A., Ehn A., Hedström Y., Alling B. Longitudinal spin fluctuations in bcc and liquid Fe at high temperature and pressure calculated with a supercell approach // Phys. Rev. B. 2020. V. 102. P. 014402.
  9. Melnikov N.B., Reser B.I. Magnetism of metals in the dynamic spin-fluctuation theory // Phys. Met. Metallogr. 2016. V. 117, no. 13. P. 1328–1383.
  10. Melnikov N., Reser B. Dynamic Spin Fluctuation Theory of Metallic Magnetism. Berlin, Springer, 2018.
  11. Paradezhenko G.V., Yudin D., Pervishko A.A. Random iron-nickel alloys: From first principles to dynamic spin fluctuation theory // Phys. Rev. B. 2021. V. 104. P. 245102.
  12. Swartzendruber L.J., Itkin V.P., Alcock C.B. The Fe-Ni (Iron-Nickel) System // J. Phase Equilibria. 1991. V. 12. P. 288–312.
  13. Xiong W., Zhang H., Vitos L., Selleby M. Magnetic phase diagram of the Fe–Ni system // Acta Mater. 2011. V. 59. no. 2, P. 521–530.
  14. Ebert H., Mankovsky S., Wimmer S. “Electronic structure: Metals and insulators” in Handbook of Magnetism and Magnetic Materials (M. Coey and S. Parkin, eds.). Berlin: Springer, 2020. P. 1–73.
  15. Ayuela A., March N.H. The magnetic moments and their long-range ordering for Fe atoms in a wide variety of metallic environments // Int. J. Quantum Chem. 2010. V. 110. P. 2725–2733,
  16. Grebennikov V.I. The dynamic theory of thermal spin fluctuations in magnets // Phys. Solid State. 1998. V. 40. P. 79–86.
  17. Reser B.I., Grebennikov V.I. Effect of dynamic nonlocal spin fluctuations on the temperature dependence of magnetic properties of ferromagnetic metals // Phys. Met. Metallogr. 1998. V. 85. P. 20–27.
  18. Paradezhenko G.V., Melnikov N.B., Reser B.I. Numerical continuation method for nonlinear system of scalar and functional equations // Comp. Math. Math. Phys. 2020. V. 60. P. 404–410.
  19. Reser B.I., Paradezhenko G.V., Melnikov N.B. Program suite MAGPROP 2.0. // Russian Federal Service for Intellectual Property (ROSPATENT), 2018.
  20. Moruzzi V.L., Janak J.F., Williams A.R. Calculated Electronic Properties of Metals. New York, Pergamon, 1978.
  21. Slater J.C. Quantum Theory of Molecules and Solids, Vol. 4: The Self-Consistent Field for Molecules and Solids. New York, McGraw-Hill, 1974.
  22. Bozorth R.M. Ferromagnetism. New York/Piscataway, NJ, Wiley-IEEE, 2nd ed., 1993.
  23. Kakehashi Y. Magnetism in amorphous transition metals // Phys. Rev. B. 1991. V. 43. P. 10820.
  24. Ehrenreich H., Schwartz L.M. “The electronic structure of alloys” in Solid State Physics: Advances in Research and Applications (H. Ehrenreich and F. S.D. Turnbull, eds.). New York: Academic, 1976. V. 31. P. 149–286.
  25. Nelson J. Sanvito S. Predicting the Curie temperature of ferromagnets using machine learning // Phys. Rev. Mater. 2019. V. 3. P. 104405.
  26. Rao Z., Ponge D., Körmann F., Ikeda Y., Schneeweiss O., Friák M., Neugebauer J., Raabe D., Li Z. Invar effects in FeNiCo medium entropy alloys: From an Invar treasure map to alloy design // Intermetallics. 2019. V. 111. P. 106520.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. DOS of d-electrons of iron, cobalt and nickel: original and smoothed using a convolution with the Lorentz function of half-width Г = 0.005W. The energies are given in units of bandwidth (Table 1). The vertical bar indicates the Fermi level ɛF.

Download (195KB)
3. Fig. 2. Dependence of the average magnetic moment mz at T = 0 for the DOS of iron, cobalt and nickel on the number of d-electrons per atom Nₑ in Stoner's theory. The arrows indicate the values ​​of Nₑ for iron, cobalt and nickel.

Download (67KB)
4. Fig. 3. Dependence of the average magnetic moment mz on the number of d-electrons per atom Ne for the DOS of iron, cobalt and nickel in the Stoner theory (left) and in the DTSF (right) at different T. The vertical bar indicates the number of d-electrons per atom Nₑ for the corresponding metal, and the temperature is measured in TC units of the corresponding metal.

Download (407KB)
5. Fig. 4. Dependence of the Curie temperature TC on the number of d-electrons per atom Nₑ for the DES of iron, cobalt and nickel: a) in Stoner's theory and b) in DTSF. The arrows indicate the Ne values ​​of iron, cobalt and nickel.

Download (125KB)
6. Fig. 5. Dependence of the average magnetic moment mz for the DES of iron, cobalt and nickel on the number of d-electrons per atom in DTSF at T = 870 K (corresponds to the maximum TS for the fcc phase of Fₑ-Nᵢ alloys [25]). The arrows indicate the Ne values ​​of iron, cobalt and nickel.

Download (69KB)
7. Fig. 6. Dependence of the local moment mL for the DES of iron, cobalt and nickel on the number of d-electrons per atom in DTSF at T = 870 K. The arrows indicate the Nₑ values ​​of iron, cobalt and nickel.

Download (71KB)