Formation of Structural-Phase State and Elastic and Durometric Properties of Biocompatible Cold-Rolled Titanium Ti–Nb–Zr-Based Alloys during Aging

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The methods of scanning electron microscopy, X-ray diffraction analysis, and microindentation are used to study the effect of alloying with zirconium (within 3 to 6 at %) and complex Zr + Sn and Zr + Sn + Ta additions on the evolution of the structure, phase composition, and properties (effective modulus of elasticity, hardness, and wear-resistance parameters) of quenched biocompatible β-titanium (at %) Ti–6% Nb–% Zr, Ti–6% Nb–% Zr, Ti–6% Nb–% Zr, Ti–6% Nb–% Zr–% Sn, and Ti–6% Nb–% Zr–% Sn–0.7Ta alloys during aging (at 400°C for 4, 16, and 64 h) after multipass cold rolling with a total degree of strain of 85%. As compared to the quenching, the cold rolling of the studied Ti–b–r alloys is shown to suppress the occurrence of the β → ω transformation in the course of aging and to favor the acceleration of the decomposition of β solid solution with the formation of nonequilibrium αl phase in the course of aging. The increase in the zirconium content from 3 to 6 at % in the cold-rolled ternary Ti–6% Nb –х% Zr alloys and introduction of complex Zr + Sn and Zr + Sn + Ta additions to the Ti–6% Nb alloy instead of only zirconium addition hinder the decomposition processes of the β phase during aging; this impacts the intensity of variations of the effective modulus of elasticity and microhardness. The aging of the cold-rolled alloys under study was found to allows us to obtain the higher values of the parameters H/Er and (Н is the hardness and Er is the resolved modulus of elasticity) associated with the wear resistance as compared to those for the widely used medical Ti–Al–V alloy. The compositions of the alloys and conditions of their treatment are determined, which allow us to obtain the combination of the highest-level properties.

About the authors

A. A. Korenev

Ural Federal University Named after the First President of Russia B.N. Yeltsin

Email: a.g.illarionov@urfu.ru
Russian Federation, Ekaterinburg, 620002

A. G. Illarionov

Ural Federal University Named after the First President of Russia B.N. Yeltsin; Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: a.g.illarionov@urfu.ru
Russian Federation, Ekaterinburg, 620002; Ekaterinburg, 620108

M. S. Karabanalov

Ural Federal University Named after the First President of Russia B.N. Yeltsin

Email: a.g.illarionov@urfu.ru
Russian Federation, Ekaterinburg, 620002

References

  1. Chen Q., Thouas G.A. Metallic implant biomaterials // Mater. Sci. Eng. R. 2015. V. 87. P. 1–57.
  2. Miyazaki S., Kim H.Y., Hosoda H. Development and characterization of Ni-free Ti-base shape memory and superelastic alloys // Mater. Sci. Eng. A. 2006. V. 438–440. P. 18–24.
  3. Дубинский С.М., Прокошкин С.Д., Браиловский В., Инаекян К.Э., Коротицкий А.В., Филонов М.Р., Петржик М.И. Структурообразование при термомеханической обработке сплавов Ti–Nb–(Zr, Ta) и проявление эффекта памяти формы // ФММ. 2011. Т. 112. № 5. С. 529–542.
  4. Коренев А.А., Илларионов А.Г. Влияние холодной прокатки на структуру, текстуру, упругие и микродюраметрические свойства биосовместимых титановых сплавов на базе системы Ti-Nb-Zr // ФММ. 2023. Т. 124. № 6. С. 492–499.
  5. Hynowska A., Pellicer E., Fornell J., González S., van Steenberge N., Surinãch S., Gebert A., Calin M., Eckert J., Baró M.D., Sort J. Nanostructured β-phase Ti–31.0Fe–9.0Sn and sub-μm structured Ti–39.3Nb–13.3Zr–10.7Ta alloys for biomedical applications: Microstructure benefits on the mechanical and corrosion performances // Mater. Sci. Eng. C. 2012. V. 32. P. 2418–2425.
  6. Leyland A., Matthews A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour // Wear. 2000. V. 246. P. 1–11.
  7. Hao Y.L., Niinomy N., Kuroda D., Fukunaga K., Zhou Y.L., Yang R., Suzuki A. Aging Response of the Young’s Modulus and Mechanical Properties of Ti–29Nb–13Ta–4.6Zr for Biomedical Applications // Metal. Mater. Trans. A. 2003. V. 34A. P. 1007–1012.
  8. Majumdar P., Singh S.B., Chakraborty M. Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques – A comparative study // Mater. Sci. Eng. A. 2008. V. 489. P. 419–425.
  9. Илларионов А.Г., Гриб С.В., Илларионова С.М., Попов А.А. Связь структуры, фазового состава, физико-механических свойств в закаленных сплавах системы Ti–Nb // ФММ. 2019. Т. 120. № 2. С. 161–168.
  10. Tane M., Okuda Y., Todaka Y., Ogi H., Nagakubo A. Elastic properties of single-crystalline ω-phase in titanium // Acta Mater. 2013. V. 61. P. 7543–7554.
  11. Acharya S., Bahl S., Dabas S.S., Hassan S., Gopal V., Panicker A.G., Manivasagam G., Suwas S., Chatterjee K. Role of aging induced α precipitation on the mechanical and tribocorrosive performance of a β Ti–Nb–Ta–O orthopedic alloy // Mater. Sci. Eng. C. 2019. V. 103. 109755.
  12. He F., Yang S., Cao J. Effect of Cold Rolling and Aging on the Microstructure and Mechanical Properties of Ti–Nb–Zr Alloy // JMEPEG. 2020. V. 29. 3411–3419.
  13. Meng Q.-K., Li H., Zhao C.-H., Wei F.-X., Sui Y.-W., Qi J.-Q. Synchrotron X-ray diffraction characterization of phase transformations during thermomechanical processing of a Ti38Nb alloy // Rare Met. 2021. V. 40. № 11. P. 3269–3278.
  14. Meng Q.-K., Xu J.-D., Li H., Zhao C.-H., Sui Y.-W., Ma W. Phase transformations and mechanical properties of a Ti36Nb5Zr alloy subjected to thermomechanical treatments // Rare Met. 2022. V. 41. № 1. P. 209–217.
  15. Jiang B., Wang Q., Wen D., Xu W., Chen G., Dong C., Sun L., Liaw P.K. Effects of Nb and Zr on structural stabilities of Ti–Mo–Sn-based alloys with low modulus // Mater. Sci. Eng. A. 2017. V. 687. P. 1–7.
  16. Иванов И., Сафарова Д., Батаева З., Батаев И. Сравнение подходов, основанных на методе Вильямсона–Холла, для анализа структуры высокоэнтропийного сплава Al0.3CoCrFeNi после холодной пластической деформации // Обработка металлов (технология; оборудование; инструменты). 2022. Т. 24. № 3. С. 90–102.
  17. Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology Pharr // J. Mater. Res. 2004. V. 19. № 1. P. 3–20.
  18. Илларионов А.Г., Нежданов А.Г., Степанов С.И., Муллер-Камский Г., Попов А.А. Структурно-фазовое состояние и механические свойства биосовместимых сплавов различных классов на основе титана // ФММ. 2020. Т. 121. № 3. С. 411–417.
  19. Лясоцкая В.С. Термическая обработка сварных соединений титановых сплавов. М.: Экомет, 2003. 352 с.
  20. Попова Л.Е., Попов А.А. Диаграммы распада аустенита в сталях и бета-раствора в сплавах титана. М.: Металлургия, 1991. 503 с.
  21. Колачев Б.А., Елагин В.И., Ливанов В.А. Металловедение и термическая обработка цветных металлов и сплавов: Учебник для вузов / 4-е изд., перераб. и доп. М.: МИСИС, 2005. 432 с.
  22. Moffat D.L., Larbalestier D.C. The Competition between Martensite and Omega in Quenched Ti-Nb Alloys // Metal. Trans. A 1988. V. 19A, № 7. P. 1677–1686.
  23. Трефилов В.И., Мильман Ю.В., Фирстов С.А. Физические основы прочности тугоплавких металлов / АН УССР, Ин-т проблем материаловедения. Киев: Наукова думка, 1975. 315 с.
  24. Murray J.L. The Nb–Ti (Niobium-Titanium) System // Bulletin of Alloy Phase Diagrams. 1981. V. 2. No. 1. P. 55–61.
  25. Murray J.L. The Ti–Zr (Titanium-Zirconium) System // Bulletin of Alloy Phase Diagrams. 1981. V. 2. No. 2. P. 197–201.
  26. Miracle D.V., Senkov O.N. A critical review of high entropy alloys and related concepts // Acta Mater. 2017. V. 122. P. 448–511.
  27. Khrunyk Y.Y., Ehnert S., Grib S.V., Illarionov A.G., Stepanov S.I., Popov A.A., Ryzhkov M.A., Belikov S.V., Xu Z., Rupp F., Nüssler A.K. Synthesis and characterization of a novel biocompatible alloy, Ti–Nb–Zr–Ta–Sn // Intern. J. Molecular Sci. 2021. V. 22. № 19. P. 10611.
  28. Ivanov I.V., Emurlaev K.I., Lazurenko D.V., Stark A., Bataev I.A. Rearrangements of dislocations during continuous heating of deformed -TiNb alloy observed by in-situ synchrotron X-ray diffraction // Mater. Characteriz. 2020. V. 166. P. 110403.
  29. Попов А.А., Петров Р.И., Попов Н.А., Нарыгина И.В., Жилякова М.А., Луговая К.И. Влияние легирования цирконием на структуру и свойства сплавов системы Ti–40 % Nb // Металловедение и термич. обр. металлов. 2021. № 9 (807). С. 45–50.
  30. Li Q., Niinomy M., Nakai M., Cui Z., Zhu S., Yang X. Effect of Zr on super-elasticity and mechanical properties of Ti–24 at% Nb–(0, 2, 4) at% Zr alloy subjected to aging treatment // Mater. Sci. Eng. A. 2012. V. 536. P. 197–206.
  31. Эмсли Дж. Элементы. М. Мир, 1993. 256 с.
  32. Цвиккер У. Титан и его сплавы. М.: Мир, 1979. 519 с.

Supplementary files

Supplementary Files
Action
1. JATS XML