The Influence of Production Technology on the Structure and Mechanical Properties of Niobium–Silicon–Aluminum Alloys
- Authors: Sapegina I.V.1, Lubnin A.N.1, Ladyanov V.I.1
-
Affiliations:
- Udmurt Federal Research Centre of the Ural Branch of the Russian Academy of Sciences
- Issue: Vol 124, No 3 (2023)
- Pages: 317-322
- Section: ПРОЧНОСТЬ И ПЛАСТИЧНОСТЬ
- URL: https://innoscience.ru/0015-3230/article/view/662805
- DOI: https://doi.org/10.31857/S0015323022601556
- EDN: https://elibrary.ru/CLUQRH
- ID: 662805
Cite item
Abstract
Cast Nb–14 at % Si–9 at % Al alloys fabricated by self-propagating high-temperature synthesis (SHS) and by SHS followed by electric arc remelting have been investigated. A structure consisting of a solid solution of silicon and aluminum in niobium (NbSS), a Nb3Al intermetallic compound, and a β-Nb5(Si,Al)3
silicide formed in the alloy fabricated by SHS. Electric arc remelting suppressed the formation of the Nb3Al
phase and resulted in the formation of a dispersed two-phase NbSS and β-Nb5(Si, Al)3 structure in the alloy.
The increased volume fraction of NbSS and the dispersed structure formed after electric arc remelting in the
alloy increase its fracture toughness to 14.8 ± 0.8 MPa m1/2 compared to 7.7 ± 0.8 MPa m1/2 for the SHSprepared
alloy.
Keywords
About the authors
I. V. Sapegina
Udmurt Federal Research Centre of the Ural Branch of the Russian Academy of Sciences
Email: sairvl@mail.ru
Izhevsk, 426067 Russia
A. N. Lubnin
Udmurt Federal Research Centre of the Ural Branch of the Russian Academy of Sciences
Email: sairvl@mail.ru
Izhevsk, 426067 Russia
V. I. Ladyanov
Udmurt Federal Research Centre of the Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: sairvl@mail.ru
Izhevsk, 426067 Russia
References
- Светлов И.Л. Высокотемпературные Nb–Si-композиты // Материаловедение. 2010. № 9. С. 29–38.
- Kocherzhinsky Yu.A., Yupko L.M. Shishkin E.A. State diagram Nb–Si // Russ. Metall. 1980. № 1. P. 206–211.
- Kimura Y., Yamaoka H., Sekido N., Mishima Y. Processing, microstructure, mechanical properties of Nb/Nb5Si3 two phase alloys // Metal. Mater. Trans. A. 2005. V. 36A. № 3. P. 483–488.
- Yukhvid V.I., Alymov M.I., Sanin V.N., Andreev D.E., Sachkova N.V. Self-propagating high-temperature synthesis of Niobium Silicide-based composite materials // Inorganic Mater. 2015. V. 51. № 12. P. 1251–1257. https://doi.org/10.1134/ S0020168515110151
- Bewlay B.P., Lipsitt H.A., Jackson M.R., Reeder W.J., Sutliff J.A. Solidification processing of high temperature intermetallic eutectic-based alloys // Mater. Sci. Eng. A. 1995. V.192/193. P. 534–543.
- Mendiratta M.G., Dimiduk D.M. Microstructures and mechanical behavior of two-phase niobium silicide-niobium alloys // Mater. Res. Soc. Symp. Proc. 1989. V. 133. P.441–446.
- Kim W.Y., Tanaka H., Kasama A., Hanada S. Microstructure and room temperature fracture toughness of Nbss/Nb5Si3 in situ composites // Intermetallics. 2001. V. 9. P. 827–834.https://doi.org/10.1016/S0966-9795(01)00072-3
- Kashyap S., Tiwary C.S., Chattopadhyay K. Microstructure and mechanical properties of oxidation resistant suction cast Nb–Si–Al alloy // Mater. Sci. Eng. A. 2013. V. 559. № 1. P. 74–85.https://doi.org/10.1016/j.msea.2012.08.027
- Sapegina I.V., Pushkarev B.E., Tereshkina S.A., Ladyanov V.I. Structure and properties of nb–si–al hypoeutectic alloys obtained by aluminothermy at different cooling rates // J. Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2021, V. 15. № 6. P. 1345–1348. https://doi.org/10.1134/S1027451021060422
- Zhao J.C., Peluso L.A., Jackson M.R., Tan L. Phase diagram of the Nb–Al–Si ternary system // J. Alloys Compds. 2003. № 4. P. 183–188.https://doi.org/10.1016/S0925-8388(03)00524-3
- Raghavan V. State diagram Al–Nb–Si // J. Phase Equilibria and Diffusion. V. 27. № 2. 2006. P. 163–165.https://doi.org/10.1361/154770306X97272
- Qu S., Han Y., Sang L. Effects of alloying elements on phase stability in Nb–Si system intermetallics materials // Intermetallics. 2007. V. 15. P. 810–813.https://doi.org/10.1016/j.intermet.2006.10.044
- Papadimitriou I., Uttonet C., Scott A., Tsakiropoulos P. Ab initio study of the intermetallics in Nb–Si binary system // Intermetallics. 2014. V. 54. P. 125–132.https://doi.org/10.1016/j.intermet.2014.05.020
- Shelekhov E.V., Sviridova T.A. Programs for X-ray analysis of polycrystals // Metal. Sci. Heat Treatment. 2000. V. 42. № 8. P. 309–313.https://doi.org/10.1007/BF02471306
- Kammerdiner L., Luo H.L. Superconductivity in the Nb-rich Nb–AI alloys // J. Appl. Phys. V. 43. № 11. 1972. P. 4728–4731.https://doi.org/10.1063/1.1660995
- Кузьмина Н.А., Бондаренко Ю.А. Исследование фазового состава и структуры ниобий-кремниевого композита, полученного методом направленной кристаллизации в жидкометаллическом охладителе // Труды ВИАМ. 2016. Т. 41. № 5. С. 19–27.
- Brukl C., Nowotny H., Benesovsky F. Study of the Ternary Systems V–Al–Si, Nb–Al–Si, Cr–Al–Si, Mo–Al–Si, and Cr(Mo)–Al–Si. Monatsh Chemie. 1961. 92. P. 967–980.
- Pan V.M., Latysheva V.I., Kulik O.G., Popov A.G., Litvinenko E.N. State diagrams of Nb–NbAl3–Nb5Si3 // Russ. Metall. 1984. № 4. P.233–235.
- Murakami T., Sasaki S., Ichikawa K., Kitahara A. Microstructure, mechanical properties and oxidation behavior of Nb–Si–Al and Nb–Si–N powder compacts prepared by spark plasma sintering // Intermetallics. 2001. V. 9. P. 621–627.
- Kashyap S., Tiwary C.S., Chattopadhyay K. Microstructural and mechanical behavior study of suction cast Nb–Si binary alloys // Mater. Sci. Eng. A. 2013. V. 583. P. 188–198.https://doi.org/10.1016/j.msea.2013.06.045
- Чернов А.А., Гиваргизов Е.И., Багдасаров Х.С., Демьянец Л.Н., Кузнецов В.А., Лабочев A.H. Современная кристаллография. Т. 3. М.: Наука, 1980. 408 с.
- Shao G. Thermodynamic assessment of the Nb–Si–Al system // Intermetallics. 2004. V. 12. № 6. P. 655–664.https://doi.org/10.1016/j.intermet.2004.03.011
- Sekido N., Kimura Y., Miura S., Mishima Y. Solidification process and mechanical behavior of the Nb/Nb5Si3 two phase alloys in the Nb–Ti–Si System // Mater. Trans. 2004. V. 45. № 12. P. 3264–3271.
- Lawn B. R., Evans A. G., Marshall D. B. Elastic/plastic indentation damage in ceramics: the median/radial crack system // Journal of the American Ceramic Society. 1981. № 9. P. 533–538.
- Андриевский Р.А., Рагуля А.В. Наноструктурные материалы. М.: Академия, 2005. 192 с.
- Jackson M.R., Bewlay B.P., Rowe R.G., Skelly D.W., Lipsitt H.A. High-temperature refractory metal-intermetallic composites // JOM. 1996. V. 48. № 1. P. 39–45.
- Светлов И.Л. Высокотемпературные Nb–Si–композиты // Материаловедение. 2010. № 10. С. 18–27.
