Initiation of the Shape Memory Effect by Fast Neutron Irradiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The band sample of austenitic steel 0.3C–13Cr–10Mn–3Si–1V was cold deformed to a shape of circular arc with a deflection of 3 mm and then irradiated by fast neutrons with a fluence of 6×1019 cm–2 in the vertical wet channel of the IVV-2M reactor at a temperature of 80 °C. This material belongs to the class of the stainless manganese austenitic steels with the shape memory effect (SME). The neutron irradiation was initially supposed to lower the SME upon the further heating in comparison with the reference sample. But instead, the SME appeared immediately under irradiation showing a decrease in the deflection of about 21 %. Check experiments confirmed that the lower limit of the SME in this material is 120 °C with its absence at 80 °C. This allows us to assert that the observed effect is the result of the neutron irradiation.

Full Text

Restricted Access

About the authors

V. I. Bobrovskii

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: bobrovskii@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

S. V. Afanasyev

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: bobrovskii@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

V. I. Voronin

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: bobrovskii@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

V. A. Kazantsev

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: bobrovskii@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

N. V. Kataeva

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: bobrovskii@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

V. D. Parkhomenko

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: bobrovskii@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

N. V. Proskurnina

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: bobrovskii@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

V. V. Sagaradze

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: bobrovskii@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

References

  1. Сплавы никелида титана с памятью формы. Структура, фазовые превращения и свойства. Ч. 1 / Под ред. В.Г. Пушина. Екатеринбург: РИО УрО РАН, 2006. 414 с. ISBN5–7691–1583–1
  2. Сагарадзе В.В., Уваров А.И. Упрочнение и свойства аустенитных сталей. Екатеринбург: РИО УрО РАН, 2013. 720 с. ISBN978–5–7691–2334–4.
  3. Зельдович В.И., Уваров А.И., Васечкина Т.П., Садовский В.Д., Малышев К.А., Мирмельштейн В.А., Устюгов П.А. Мартенситные превращения при деформации и механические свойства аустенитных хромомарганцевых сталей. I. Дилатометрические эффекты при ε → γ превращении в деформированных сталях // ФММ. 1975. Т. 40. № 2. С. 394–402.
  4. Терещенко Н.А., Сагарадзе В.В., Уваров А.И., Малышев К.Л. Стареющие стали со структурой ε – мартенсита // ФММ. 1982. Т. 53. № 1. С. 124–130.
  5. Sagaradze V.V., Mukhin M.L., Belozerov E.V., Zainutdinov Yu.R., Pecherkina N.L., Filippov Yu.I. Controlled shape memory effect in high strength Mn and Cr–Mn steels // Mat. Sci. Eng. A. 2008. V. 481–482. P. 742–746.
  6. Sagaradze V.V., Voronin V.I., Filippov Yu.I

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental (red circles) and calculated (envelope blue line) radiographs of a hardened 0.2C–20Mn–2Si–1V steel tape. The green line is the difference between the experiment and the calculation. Strokes from top to bottom: angular positions of the reflexes of the γ-phase of the solid iron solution, the hexagonal ε-phase and the BCC α-phase.

Download (15KB)
3. Fig. 2. Experimental (red circles) and calculated (envelope blue line) radiographs of a hardened 0.3C–13Cr–10Mn–3Si–1V steel tape. The green line is the difference between the experiment and the calculation. Strokes from top to bottom: the angular positions of the reflexes of the γ-phase of the solid iron solution, the hexagonal ε-phase and the BCC α-phase Fe used in the fitting. On the insert is an X-ray of the α-phase iron powder.

Download (17KB)
4. Fig. 3. The middle line of the lateral projection of the 0.3C–13Cr–10Mn–3Si–1V steel sample in the initial state and after irradiation with a fast neutron fluence of 6 × 1019 cm–2.

Download (16KB)
5. Fig. 4. The middle line of the lateral projection of a 0.2C–20Mn–2Si–1V steel sample in the initial state and after irradiation with a fast neutron fluence of 6 × 1019 cm–2.

Download (15KB)
6. Fig. 5. The middle line of the lateral projection of the steel sample 0.3C–13Cr–10Mn–3Si–1V after successive hourly annealing at temperatures 90, 110, 142, 160, 190, 215, 250, 300, 500 ° C. The points corresponding to the initial state of the sample, designated as 20 °C.

Download (19KB)
7. Fig. 6. The magnitude of the deflection boom of the middle line of the lateral projection of the steel sample 0.3C–13Cr–10Mn–3Si–1V depending on the annealing temperature.

Download (11KB)
8. Fig. 7. Temperature dependence of the relative elongation of a preformed steel sample 0.3C–13Cr–10Mn–3Si–1V obtained during dilatometric measurements with two passes of the temperature range 20-250 °C.

Download (14KB)
9. Figure 8. Temperature dependence of the coefficient of thermal linear expansion of a steel sample 0.3C–13Cr–10Mn–3Si–1V obtained during dilatometric measurements.

Download (12KB)