Multisublattice magnetic structures in charge ordered perovskite manganites with high doping level

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study is devoted to the theoretical analysis of noncollinear magnetic structures of charge-ordered manganites with a doping level x=3/4, 4/5. The reasons for canted and perpendicular magnetic structures to form as a result of the competition between the orbitally dependent exchange interaction in different crystallographic directions and the influence of single-ion anisotropy are considered. The mechanism of formation of predominantly noncollinear magnetic structures is shown. Trimer stripe magnetic structures with ordering along pseudo-perovskite axes xp, yp, zp = b are predicted. The presence of magnetic structure components aligned with the b axis is assumed and methods for checking the presence of such components based on field dependencies of magnetization and antiferromagnetic resonance frequencies are proposed.

Full Text

Restricted Access

About the authors

L. E. Gonchar

Ural State University of Railway Transport; Ural Federal University named after the First President of Russia B. N. Yeltsin

Author for correspondence.
Email: l.e.gonchar@yandex.ru
Russian Federation, 620034, Ekaterinburg; 620002, Ekaterinburg

References

  1. Goodenough J.B. Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3 // Phys. Rev. 1955. V. 100. P. 564–573.
  2. Wollan E.O., Koehler W.C. Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [(1-x)La(x)Ca]MnO3 // Phys. Rev. 1955. V. 100. P. 545–563.
  3. Jirák Z., Krupička S., Šimša Z., Dlouhá M., Vratislav S. Neutron diffraction study of Pr1-xCaxMnO3 perovskites // J. Magn. Magn. Mat. 1985. V. 53. P. 153–166.
  4. Martin C., Maignan A., Hervieu M., Raveau B. Magnetic phase diagrams of L1-xAxMnO3 manganites (L=Pr, Sm; A=Ca, Sr) // Phys. Rev. B. 1999. V. 60. P. 12191–12199.
  5. Fernández-Díaz M.T., Martínez J.L., Alonso J.M., Herrero E. Structural, thermal, transport, and magnetic properties of the charge-ordered La1/3Ca2/3MnO3 oxide // Phys. Rev. B. 1999. V. 59. P. 1277–1284.
  6. Radaelli P.G., Cox D.E., Capogna L., Cheong S.-W., Marezio M. Wigner-crystal and bi-stripe models for the magnetic and crystallographic superstructures of La0.333Ca0.667MnO3 // Phys. Rev. B. 1999. V. 59. P. 14440–14450.
  7. Blasco J., Ritter C., García J., de Teresa J.M., Perez-Cacho J., Ibarra M.R. Structural and magnetic study of Tb1-xCaxMnO3 perovskites // Phys. Rev. B. 2000. V. 62. P. 5609–5618.
  8. Троянчук И.О., Мантыцкая О.С., Чобот А.Н. Магнитная фазовая диаграмма манганитов Bi1-xCaxMnO3 // ФТТ. 2002. Т. 44. С. 2164–2168.
  9. Бебенин Н.Г., Зайнуллина Р.И., Устинов В.В. Манганиты с колоссальным магнетосопротивлением // УФН. 2018. Т. 188. С. 801–820.
  10. Khomskii D.I., Streltsov S.V. Magnetic oxides // arXiv:2212.14176 [cond-mat.str-el]. https://doi.org/10.48550/arXiv.2212.14176
  11. Погорелов Ю.Г., Локтев В.М. Особенности физических свойств и колоссальное магнитосопротивление манганитов // ФНТ. 2000. Т. 26. С. 231–261.
  12. Mochizuki M., Furukawa N. Microscopic model and phase diagrams of the multiferroic perovskite manganites // Phys. Rev. B. 2009. V. 80. P. 134416.
  13. Santhosh P.N., Goldberger J., Woodward P.M. Phase separation over an extended compositional range: Studies of the Ca1-xBixMnO3 (x ≤ 0.25) phase diagram // Phys. Rev. B. 2000. V. 62. P. 928–942.
  14. Pissas M., Margiolaki I., Prassides K., Suard E. Crystal and magnetic structural study of the La1-xCaxMnO3 compound (x= 3/4) // Phys. Rev. B. 2005. V. 72. P. 064426.
  15. Ade R., Singh R. Magnetic and Transport Properties of Bi0.5-xPrxCa0.5MnO3 (0.0 ≤ x ≤ 0.50) Manganites // J. Supercond. Nov. Magn. 2018. V. 31. P. 1403–1409.
  16. Pissas M., Stamopoulos D., Arulraj A., Prassides K. Evolution of the magnetic structure in overdoped antiferromagnetic La1-xCaxMnO3 (0.51 ≤ x ≤ 0.69) manganites: A neutron diffraction study // Phys. Rev. B. 2023. V. 107. P. 035110.
  17. Grenier S., Kiryukhin V., Cheong S.-W., Kim B.G., Hill J.P., Thomas K.J., Tonnerre J.M., Joly Y., Staub U., Scagnoli V. Observation of orbital ordering and Jahn-Teller distortions supporting the Wigner-crystal model in highly doped Bi1-xCaxMnO3 // Phys. Rev. B. 2007. V. 75. P. 085101.
  18. Yadav K., Varma G.D. Magnetic and charge-ordering properties of Bi0.2 – xPrxCa0.8MnO3 (0.0 ≤ x ≤ 0.20) perovskite manganite // J. Supercond. Nov. Magn. 2012. V. 12. P. 1097–1104.
  19. Лошкарева Н.Н., Мостовщикова Е.В. Электронно-легированные манганиты на основе CaMnO3 // ФММ. 2012. Т. 113. С. 22–42.
  20. Кугель К.И., Рахманов А.Л., Сбойчаков А.О. Электронное фазовое расслоение в магнитных материалах // ФММ. 2022. Т. 123. С. 716–752.
  21. Mori S., Chen C.Y., Cheong S.-W. Pairing of charge-ordered stripes in (La, Ca)MnO3 // Nature. 1998. V. 392. P. 473–476.
  22. Gonchar L.E. Theoretical study of frustrated magnetic ordering in La1/3Ca2/3MnO3: The role of charge-orbital ordering // J. Magn. Magn. Mater. 2020. V. 513. P. 167248.
  23. Gonchar L. Magnetic frustration in insulating Jahn-Teller manganite crystals // Low Temp. Phys. 2022. V. 48. P. 37–42.
  24. Likodimos V., Pissas M. Magnetic heterogeneity in electron doped La1–xCaxMnO3 manganites studied by means of electron spin resonance // J. Phys.: Condens. Matter. 2005. V. 17. P. 3903–3914.
  25. Гончарь Л.Э., Никифоров А.Е. Влияние орбитального упорядочения на формирование магнитной структуры в ян-теллеровском магнетике LaMnO3 // ФТТ. 2000. Т. 42. С. 1038–1042.
  26. Никифоров А.Е., Попов С.Э., Шашкин С.Ю. Микроскопические расчеты структуры и свойств кристалла LaMnO3 // ФММ. 1999. Т. 87. C. 16–22.
  27. Pissas M., Kallias G., Hofmann M., Többens D.M. Crystal and magnetic structure of the La1-xCaxMnO3 compound (x=0.8,0.85) // Phys. Rev. B. 2002. V. 65. P. 064413.
  28. Gonchar L.E. Orbital state dependence of insulating manganites’ magnetic ordering // J. Magn. Magn. Mater. 2018. V. 465. P. 661–669.
  29. Pissas M., Kallias G. Phase diagram of the La1–xCaxMnO3 compound (0.5 ≤ x ≤ 0.9) // Phys. Rev. B. 2003. V. 68. P. 134414.
  30. Endo T., Goto T., Inoue Y., Koyama Y. Disordered Jahn–Teller-Polaron States in the Simple Perovskite Manganite Ca1–xLaxMnO3 with 0.15 ≤ x ≤ 0.28 // J. Phys. Soc. Jap. 2019. V. 88. P. 074708.
  31. Gonchar L.E. Corrigendum to “Theoretical study of frustrated magnetic ordering in La1/3Ca2/3MnO3: The role of charge-orbital ordering” [J. Magn. Magn. Mater.513 (2020) 167248] // J. Magn. Magn. Mater. 2023. V. 575. P. 170749.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The orbital-charge structure of La1/4Ca3/4MnO3 [14]. Here and in the following figures, Mn3+ ions are depicted as a distribution of electron densities, Mn4+ ions are indicated by spheres. The numbers number the sublattices of the orbital structure.

Download (94KB)
3. Pain. 2. The orbital and charge structure of the manganese sublattice in Bi1/5Ca4/5MnO3 [15].

Download (100KB)
4. Fig. 3. The dependence of the magnetic energy of various structures on the mixing angle of the orbital functions with the spatial distribution of orbitals in accordance with the formulas (4), (7). 1, 2 or G denote ranges of angles Θ with different types of magnetic structure.

Download (72KB)
5. Fig. 4. Possible equilibrium magnetic structures of manganites with the orbital-charge structure “Wigner crystal”, x = 3/4, 4/5. In the adjacent ac plane, the directions of the magnetic moments are opposite. (a–c) – magnetic structures for La1/4Ca3/4MnO3; a – magnetic structure of type 1 without doubling the magnetic cell, b – magnetic structure of type 2 with the ordering of stripes along the orthorhombic axis (for example, c), c – magnetic structure of type 2 with mutually perpendicular ordering of stripes Mn4+– Mn3+– Mn4+ and one of the possible orders of the intermediate stripe; (d–e) – magnetic structures for Bi1/5Ca4/5MnO3; d – magnetic structure of type 1 without doubling the magnetic cell, d – magnetic structure of type 2 with the ordering of Mn4+– Mn3+– Mn4+ stripes along the orthorhombic axis (for example, c) and one of the possible orders of the intermediate stripe, e – a type 2 magnetic structure with a mutually perpendicular ordering of Mn4+– Mn3+– Mn4+ stripes and one of the possible orders of the intermediate stripe.

Download (297KB)
6. Fig. 5. Distribution of magnetic sublattices in the ac plane; a – La1/4Ca3/4MnO3, in the adjacent plane the number of the sublattice increases by 16; b – Bi1/5Ca4/5MnO3, in the adjacent plane the number of the sublattice increases by 20.

Download (116KB)
7. Pain. 6. The application of magnetic moments in the approximately-stripe structures of high-performance manganites, the applications of magnetic moments in the adjacent AC plane are opposite. Red arrows – projections of Mn3+ magnetic moments; blue arrows–projections of Mn4+ magnetic moments inside Mn4+–Mn3+ – Mn4+ stripes; green arrows – projections of Mn4+ magnetic moments in the gaps between stripes; a, b – La1/4Ca3/4MnO3; b, G-Bi1/5Ca4/5MnO3.

Download (142KB)