Physical and technological features of mechanoactivation of powder particles formed during hydro-vacuum dispersion of metallic melts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A study has been conducted on the hydro-vacuum dispersion process of metal melts using gray cast iron SCh20 (in Russian nomencluture; 3.3–3.5C, 1.4–2.4Si, 0.7–1Mn, <0.15S, <0.2P in wt %)—an analogue of GG20. It has been revealed that the main factor conditioning the mechanoactivation of formed particles is their solidification in a fibrous non-equilibrium structural-tensioned state. This state is achieved by flattening and asymmetric twistedness of droplets that are detached from the liquid metal in the disperser under volumetric impact of shock-pulsating waves of hydraulic discharge. The degree of particle activation was found to depend exponentially on their dispersion and specific surface area. These parameters determine the degree of asymmetry of shear deformations and the amount of accumulated energy. In turn, the size dispersion and specific surface are significantly influenced by physical and technological factors such as the specific flow rate and pressure of injected water, the thickness and the elevation angle of the hydro shell of the vacuum diffusion funnel, the diameter of the dispersed melt jet passed through it, and its superheating temperature. The control of these parameters makes it possible to smoothly adjust the key ratio “liquid metal: water” and set up the dispersion process with the highest possible degree of size dispersion and activation of the resulting powder.

Full Text

Restricted Access

About the authors

G. V. Jandieri

LEPL R. Dvali Institute of Machine Mechanics; Metallurgical Engineering and Consulting Ltd

Author for correspondence.
Email: gigo.jandieri@gmail.com
Georgia, 0186, Tbilisi, 0109, Tbilisi

D. V. Sakhvadze

Metallurgical Engineering and Consulting Ltd

Email: gigo.jandieri@gmail.com
Georgia, 0109, Tbilisi

B. G. Saralidze

LEPL Tavadze Institute of Materials Sciences and Metallurgy

Email: gigo.jandieri@gmail.com
Georgia, 0186, Tbilisi

G. D. Sakhvadze

Metal Powder Ltd.

Email: gigo.jandieri@gmail.com
Georgia, 0186, Tbilisi

References

  1. Unnikrishnan R., Gardy J., Spencer B.F., Kurinjimala R., Dey A., Nekouie V., Irukuvarghula S., Hassanpour A., Eisenmenger-Sittner Cr., Francis J.A., Preuss M. Functionalization of metallic powder for performance enhancement // Mater. & Design. 2022. V. 221. P. 110900. https://doi.org/10.1016/j.matdes.2022.110900
  2. Saprykina N.A., Saprykin A.A., Arkhipova D.A. Influence of Shielding Gas and Mechanical Activation of Metal Powders on the Quality of Surface Sintered Layers // IOP Conf. Series: Mater. Sci. Eng. 2016. V. 125. P. 012016. https://doi.org/10.1088/1757-899X/125/1/012016
  3. Korotkikh A.G., Glotov O.G., Arkhipov V.A., Zarko V.E., Kiskin A.B. Effect of Iron and Boron Ultrafine Powders on Combustion of Aluminized Solid Propellants // Combust. and Flame. 2017. V. 178. P. 195–204. https://doi.org/10.1016/j.combustflame.2017.01.004
  4. Korotkikh A.G. and Sorokin I.V. Study of the Chemical Activity of Metal Powders Based on Aluminum, Boron, and Titanium // AIP Conf. Proc. 2020. V. 2212. № 1. P. 020029. https://doi.org/10.1063/5.0000838
  5. Shaun Zhang Soong, Wing Lam Lai, Andrew Ng Kay Lup. Atomization of metal and alloy powders: Processes, parameters, and properties // AIChE Journal. 2023. https://doi.org/10.1002/aic.18217
  6. Севостьянов М.В., Полуэктова В.А., Севостьянов В.С., Шаталов А.В., Сирота В.В. Теория и практика механоактивации материалов при объемно-сдвиговом деформировании частиц // Вестник ТГТУ. 2018. Т. 24. № 4. P. 652–662. https://doi.org/10.17277/vestnik.2018.04.pp.652–662
  7. Еремина М.А., Ломаева С.Ф., Паранин С.Н., Тарасовa В.В. Влияние условий механоактивации и пав на фазовый состав и свойства композитов на основе карбогидрида титана и меди // ФММ. 2020. Т. 121. № 2. С. 207–215.
  8. Baras F., Bizot Q., Fourmont A., Le Gallet S., Politano O. Mechanical activation of metallic powders and reactivity of activated nanocomposites: a molecular dynamics approach // Appl. Phys. A, Mater. Sci. Proces. 2021. V. 127. № 7. P. 555. https://doi.org/10.1007/s00339-021-04700-9
  9. Калошкин С.Д., Принсипи Д.Ж., Томилин И.А., Чердынцев В.В. Закономерности и движущие силы формирования квазикристаллической фазы в Al–Cu–Fe порошках после механоактивации // ФММ. 2008. Т. 105. № 6. С. 647–658.
  10. Chanadee T., Singsarothai S. Mechanoactivated SHS of Si–SiC Powders from Natural Sand: Influence of Milling Time // Int. J Self-Propag. High-Temp. Synth. 2018. V. 27. P. 85–88. https://doi.org/10.3103/S1061386218020061
  11. Козырев Н.А., Усольцев А.А., Михно А.Р., Шевченко Р.А., Ознобихина Н.В. Разработка состава титанотермитной смеси для сварки // Черная Металлургия. Бюллетень научно-технической и экономической информации. 2022. T. 78. № 7. C. 625–630. https://doi.org/10.32339/0135-5910-2022-7-625-630
  12. Григорьева Т.Ф., Киселева Т.Ю., Петрова С.А., Талако Т.Л., Восмериков С.В., Удалова Т.А., Девяткина Е.Т., Новакова А.А., Ляхов Н.З. Механохимически стимулированные реакции восстановления оксида железа алюминием // ФММ. 2021. T. 122. № 6. C. 614–620
  13. Григорьева Т.Ф., Талако Т.Л., Девяткина Е.Т., Восмериков С.В., Анчаров А.И., Цыбуля С.В., Витязь П.А., Ляхов Н.З. Модифицирование меди оксидом алюминия в ходе механически стимулированной реакции // ФММ. 2023. T. 124. № 1. C. 78–83.
  14. Миронов В.А., Шишкин А.Ю., Поляков А.В., Трейс Ю.К. Извлечение меди из водных растворов с использованием железных порошковых материалов // Журнал Белорус. гос. ун-та. Экология. 2018. № 1. С. 97–102.
  15. Alymov M.I., Seplyarskii B.S. and Gordopolova I.S. Ignition of pyrophoric powders: An entry-level model // Journal of Physics: Conference Series 2015. V. 653. P. 012052. doi: 10.1088/1742-6596/653/1/012052
  16. Rouquerol J., Rouquerol F., Llewellyn P., Maurin G., and Sing K. Adsorption by powders and porous solids. Principles, methodology and applications. 2014. 2nd ed. Oxford: Academic Press. 611 p.
  17. Sakhvadze D., Jandieri G., Tsirekidze T., Gorbenko I. Device for producing metallic powder from melt // Pat. GE P20156384 (B), B22F9/08, 2015.
  18. Sakhvadze D., Jandieri G., Sakhvadze G. Method for metallic powder preparation and device for implementation thereof // Patent GE 2020 7078 B. B 22 F 9/08. Official Bulletin of the Industrial Property of Georgia, № 5, 2020.03.10.
  19. Sakhvadze D., Jandieri G., Bolqvadze I., Shteinberg А., Tsirekidze Т. Morphological and metallographic analysis of metallic powders produced by the method of hydro-vacuum dispersion of melts // XIV International Symposium SHS-2017, Tbilisi. 2017. P. 218–221.
  20. Джандиери Г.В., Горбенко И.Ф., Сахвадзе Д.В., Цирекидзе Т.И. Инновационная гидровакуумная технология грануляции металлических расплавов // Современная электрометаллургия. 2018. № 4 (132). С. 70–74. https://doi.org/10.15407/sem2018.04.06
  21. Sakhvadze D., Jandieri G., Bolkvadze J. Novel technology of metal powders production by hydrovacuum dispersion of melts // Machines Technol Mater. 2018. V. 12. № 6. P. 236–239. https://stumejournals.com/journals/mtm/2018/6/236
  22. Sakhvadze D., Jandieri G., Jangveladze G., Sakhvadze G. A new technological approach to the granulation of slag melts of ferrous metallurgy: obtaining glassy fine-grained granules of improved quality // J. Eng. Appl. Sci. 2021. V. 68. P. 22. https://doi.org/10.1186/s44147-021-00019-7
  23. Ternovoj Ju.F., Bagljuk G.A., Kudievskij S.S. Theoretical basics of processes of atomization of metal melts: Monografija. Zaporozh’e: Izdatel’stvo ZGIA, 2008. 298 p.
  24. Xakalashe Buhle Sinaye. Removal of Phosphorus from Silicon Melts by Vacuum Refining // Thesis. Norwegian University of Science and Technology. 2011. 49 p.
  25. Kharlashin P.S., Bendich A.V. Some kinetic features of evaporation of arsenic, sulfur and phosphorus from cast iron during its vacuumization // Bulletin of the Pryazovskyi State Technical University. 2011. V. 22. P. 55–59.
  26. Dobrzański L.A., Dobrzański L.B., Dobrzańska-Danikiewicz A.D., Kraszewska M. Manufacturing powders of metals, their alloys and ceramics and the importance of conventional and additive technologies for products manufacturing in Industry 4.0 stage // Archives of Mater. Sci. Eng. 2020. V. 102. № 1. P. 13–41. https://doi.org/10.5604/01.3001.0014.1452
  27. Yefimov N.A. Chapter 10 – Powders with Quasicrystalline Structure // Handbook of Non-Ferrous Metal Powders (Second Edition). Editor(s): O.D. Neikov, S.S. Naboychenko, N.A. Yefimov. Elsevier, 2019. P. 313–321. https://doi.org/10.1016/B978-0-08-100543-9.00010-5
  28. Панин В.Е. Основы физической мезомеханики // Физич. мезомеханика. 1998. № 1. С. 5–22.
  29. Yoshida S. Comprehensive description of deformation and fracture of solids as wave dynamics // Mathematics and Mechanics of Solids. 2017. V. 22. № 5. P. 1094–1115. https://doi.org/10.1177/1081286515616859
  30. Bernard F., Paris S., Gaffet E. Mechanical Activation as a New Method for SHS // Advances Sci. Technology. 2006. V. 45. P. 979–988. https://doi.org/10.4028/www.scientific.net/ast.45.979
  31. Bolgaru K.A., Akulinkin A.A. and Kryukova O.G. Effect of mechanical pre-activation on the nitriding of aluminum ferrosilicon in the combustion mode // J. Phys.: Conf. Ser. 2020. V. 1459. P. 012009. https://doi.org/10.1088/1742-6596/1459/1/012009
  32. Бевза В.Ф., Марукович Е.И., Груша В.П. Формирование полых заготовок из чугуна с шаровидным графитом в условиях пристеночной кристаллизации // Литье и металлургия. 2009. T. 3. С. 178–181.
  33. Свичкарь А.С., Шибеев Е.А., Гарибян Г.С., Еремин Е.Н. Влияние предусадочного расширения на размерную точность отливок из высокопрочного чугуна // Вопр. материаловедения. 2019. T. 3(99). С. 23–28. https://doi.org/10.22349/1994-6716-2019-99-3-23-28
  34. Walter A., Witt G., Platt S., Kleszczynski S. Manufacturing and Properties of Spherical Iron Particles from a by-Product of the Steel Industry // Powders. 2023. T. 2. Р. 216–231. https://doi.org/10.3390/powders2020015
  35. Sydney Luk. Surface Area, Density, and Porosity of Powders. Powder Metallurgy // ASM HANDBOOK. 2015. V. 7. https://doi.org/10.31399/asm.hb.v07.a0006107
  36. Homer E.R. Modeling the Mechanical Behavior of Amorphous Metals by Shear Transformation Zone Dynamics // Thesis PhD, Massachusetts Institute of Technology. 2010. 110 р. https://core.ac.uk/download/pdf/4423294.pdf
  37. Choi S., Park S. and Baek E.R. Development of Thermite Powder for Rail Joining with Recycled Iron Oxide and Aluminium Powder // J. Welding Joining. 2012. V. 30. № 5. P. 40–45. https://doi.org/10.5781/KWJS.2012.30.5.434
  38. Sakhvadze D., Gorbenko I., Jandieri G., Tsirekidze T., Shteinberg A. Device of molten granulation for obtaining the powder materials for SHS // International Symposium SHS-XIII, 2015. Turkey. Antalya, 2015. P. 140–141.
  39. Джандиери Г.В., Сахвадзе Д.В., Гордезиани Г.A., Штейнберг А.С. Повышение эффективности СВС-компактирования функционально-градиентных материалов системы Ti–B // Металлургия машиностроения. 2016. T. 5. С. 20–26.
  40. Мырзахметов Б.А., Крупник Л.А., Султабаев А.Е., Токтамисова С.М. Математическая модель работы струйного насоса в составе скважинной тандемной установки // Горный информационно-аналитический бюллетень. 2019. № 8. С. 123–135. https://10.25018/0236-1493-2019-08-0-123-135
  41. Vostrikov A.V., Volkov A.M., Bakradze M.M. Development and research of a new granular disk alloy VZh178P for advanced aviation GTE // Tsvetnye Metally. 2018. № 8. https://doi.org/10.17580/tsm.2018.08.11
  42. Панин В.Е., Панин А.В., Моисеенко Д.Д., Шляпин А.Д., Авраамов Ю.С., Кошкин В.И. Физическая мезомеханика деформируемого твердого тела как многоуровневой системы. II. Явление взаимного проникания частиц разнородных твердых тел без нарушения сплошности под воздействием концентрированных потоков энергии // Физическая мезомеханика. 2006. T. 9. № 4. С. 5–13.
  43. Джандиери Г.В., Сахвадзе Д.В., Захаров Г.В., Харати Р.Г. Разработка и исследование СВС-технологии получения специальных поликомпонентных лигатур из отходов ферросплавного производства // Металлургия машиностроения. 2019. T. 3. С. 40–43. URL: https://www.elibrary.ru/item.asp?id=37651398
  44. Ключников Г.М., Ключников И.Г. Устойчивая сверхпластическая деформация и теплообмен // Международный журнал прикладных и фундаментальных исследований. 2015. T. 8(3). С. 458–465. URL: https://appliedresearch.ru/ru/article/view?id=7127
  45. Nikishina M., Ivanova E., Tretyakova A., Mukhtorov L., and Atroshchenko Y. Study of biological activity colloidal solutions of iron synthesized on the basis of aqueous cuff extract // Siberian Journal of Life Sciences and Agriculture. 2022. V. 14. № 6. P. 388–403. https://doi.org/10.12731/2658-6649-2022-14-6-388-403

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. General view of the main technological unit of the hydro-vacuum dispersion (HVD) installation during the commissioning of research equipment (a), its structural features (b) and wave dynamics of operation (c); 1 – cylindrical body; 2 – high–pressure water supply; 3 - cylindrical immersed in the body 1 (located concentrically) a pipe of smaller diameter and length with thickened walls 3 from below, narrowing its section; 4 – an annular channel (collector) formed between the outer body 1 and the inner pipe 3 for pumping water supplied through the channel 2; 5 – a semi–toroidal confuser with the function of intracorporeal reverse injection of water pumped into an annular collector (4), formed between the lower ends of the housing 1 and a pulp–forming Venturi 3-3 located inside it, with an outlet slit height of h; 6 - a ceramic nozzle immersed in the melt with a cylindrical channel 6 and with a conical head mating to the hydraulic rarefaction zone, with a nominal diameter – d; 7 – lower flange pair for fixing the nozzle (6) and sealing the housing (1); 7 – upper flange pair/roof for sealing the water–pressure annular collector (4); 8 - dispersion chamber, in which the shock–wave effect λ is carried out on the sucked melt; 8 – diffuser of the formed pulp; 9 - crankshaft nozzle with an ulpa-diverting cylindrical channel 9 for supplying pulp to the hydrocyclone sedimentation chamber and to sorting, and drying plants (not shown in the diagram).

Download (328KB)
3. Fig. 2. Simplified hydromechanical scheme of the GWD process: y – linear velocity of displacement of melt particles, m/s; α – angle of attack of injected water on the jet of the sucked melt, deg; d1 – initial diameter of the sucked jet, mm; d2 – diameter of crimping after vortex-stretching action, mm; ω – angular velocity rotation, rad/s; ξ – the value of hydraulic resistance, kg/m3.

Download (261KB)
4. Fig. 3. The surface of a particle with a cavitation ablation crater (a) and subsequently formed satellite spheroidal particles with a size of 0.1–1.3 microns (b).

Download (279KB)
5. Fig. 4. Fragment of the vibration diagram of the main technological unit of the hydro-vacuum dispersion unit before (0→1) and after metal intake (1→2).

Download (45KB)
6. Fig. 5. Morphology of the surface of a particle of the MF 20 melt solidified under conditions of angular shear deformation (a); relief of a particle with linear deformation-shear bands of a fibrous type (b); a cracked particle with a gas void core and a stratified shell of Fe3C cementite (c); a cracked particle with a dense layer detached from the outer shell the spheroidal core (d).

Download (950KB)
7. Fig. 6. X-ray diffractogram of cast iron powder obtained by the GVD method.

Download (156KB)
8. Fig. 7. Perforated imprints of cavitation pseudo-boiling before (a) and after their disclosure during the manufacture of the microplate (b).

Download (430KB)
9. Fig. 8. Microstructure of the transition zone of a particle with a size of 500 microns with a section of a dense core and adjacent mesbands of angular deformation shear (a) and the dynamics of their propagation (b).

Download (588KB)
10. Fig. 9. The effect of the initial melt temperature and the diameter of the suction nozzle on the dispersion of the resulting powder at water injection pressures of 12 (a) and 20 (b) bar.

Download (833KB)
11. Fig. 10. Shape, microrelief (a) and morphology (b) of particles of gray cast iron powder SCH20 obtained in the mode of fine dispersion and amorphization.

Download (541KB)
12. Fig. 11. X-ray diffractogram of GWD powder of cast iron (a) and copper extracted with its help (b).

Download (298KB)