Composition, morphology, and structure of ultrafine ZnS-ZnO powders alloyes with transition metal oxides
- Authors: Ravikumar R.V.1, Nemallapudi B.R.2, Gundala S.2, Markov V.F.2,3, Maskaeva L.N.2,3, Ishchenko A.V.2, Skornyakov L.G.2, Chukin A.V.2, Kovalev I.S.2, Zyryanov G.V.2,4
-
Affiliations:
- Acharya Nagarjuna University
- Ural Federal University named after the first President of Russia B.N. Yeltsin
- Ural Institute of the State Fire Service of the Ministry of Emergency Situations of Russia
- Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences
- Issue: Vol 125, No 5 (2024)
- Pages: 556-564
- Section: СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ
- URL: https://innoscience.ru/0015-3230/article/view/662910
- DOI: https://doi.org/10.31857/S0015323024050088
- EDN: https://elibrary.ru/XWUUBO
- ID: 662910
Cite item
Abstract
Ultrafine ZnO–ZnS powders with additions of d-metal oxides additions, namely, V2O5, MnO, Fe2O3, CoO, NiO, CuO are studied. The alloying the ZnO–ZnS system with d-metals changes the morphology of the synthesized powders. The particle size distribution obeys the lognormal law. The addition of d-metal oxide upon the synthesis of ZnO–ZnS composites shifts the maximum of the particle-size distribution to the larger sizes. The most probable particle size for samples alloyed with iron and cobalt (530 nm) exceeds that of unalloyed sample (320 nm) by more than 1.6 times. All the synthesized samples are found to be characterized by excess oxygen. The zinc, sulfur and oxygen contents in the unalloyed ZnO–ZnS compositions is 48.0, 12.8 and 39.2 at%, respectively. The synthesis of the ZnO–ZnS composition together with transition metal oxides does not change the hexagonal and cubic symmetry of the sulfide and hexagonal symmetry of zinc oxide. The presence of iron leads to an increase in the coherent domain size of the cubic ZnS phase.
Keywords
Full Text

About the authors
R. V. S. S. N. Ravikumar
Acharya Nagarjuna University
Email: sko111lev@gmail.com
Department of Physics
India, 522510, Nagarjuna NagarB. R. Nemallapudi
Ural Federal University named after the first President of Russia B.N. Yeltsin
Email: sko111lev@gmail.com
Russian Federation, 620002, Ekaterinburg
S. Gundala
Ural Federal University named after the first President of Russia B.N. Yeltsin
Email: sko111lev@gmail.com
Russian Federation, 620002, Ekaterinburg
V. F. Markov
Ural Federal University named after the first President of Russia B.N. Yeltsin; Ural Institute of the State Fire Service of the Ministry of Emergency Situations of Russia
Email: sko111lev@gmail.com
Russian Federation, 620002, Ekaterinburg; 620062, Ekaterinburg
L. N. Maskaeva
Ural Federal University named after the first President of Russia B.N. Yeltsin; Ural Institute of the State Fire Service of the Ministry of Emergency Situations of Russia
Email: sko111lev@gmail.com
Russian Federation, 620002, Ekaterinburg; 620062, Ekaterinburg
A. V. Ishchenko
Ural Federal University named after the first President of Russia B.N. Yeltsin
Email: sko111lev@gmail.com
Russian Federation, 620002, Ekaterinburg
L. G. Skornyakov
Ural Federal University named after the first President of Russia B.N. Yeltsin
Author for correspondence.
Email: sko111lev@gmail.com
Russian Federation, 620002, Ekaterinburg
A. V. Chukin
Ural Federal University named after the first President of Russia B.N. Yeltsin
Email: sko111lev@gmail.com
Russian Federation, 620002, Ekaterinburg
I. S. Kovalev
Ural Federal University named after the first President of Russia B.N. Yeltsin
Email: sko111lev@gmail.com
Russian Federation, 620002, Ekaterinburg
G. V. Zyryanov
Ural Federal University named after the first President of Russia B.N. Yeltsin; Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences
Email: sko111lev@gmail.com
Russian Federation, 620002, Ekaterinburg; 620137, Ekaterinburg
References
- Sze S.M., Ng K.K. Physics of semiconductor devices, third edition. John Wiley & Sons, Inc., Hoboken, New Jersey, 2007. 815 p.
- Kurnia F., Hart J.N. Band-gap control of zinc sulfide: Towards an efficient visible-light-sensitive photocatalyst // Chem.Phys. Chem. 2015. V. 16. P. 2397–2402.
- Воронкова Е.М., Гречушников Б.Н., Дистлер Г.Н., Петров Н.П. Оптические материалы для инфракрасной техники. М.: Наука, 1965. 336 c.
- Shionoya S., Yen W.M., Yamamoto H. Phosphor handbook. 2nd ed. CRC Press, 2007. 1055 p.
- Kudo A., Sekizawa M. Photocatalytic H2 evolution under visible light irradiationon Zn1–xCuxS solid solution // Catal. Lett. 1999. V. 58. P. 241–243.
- Kudo A., Sekizawa M. Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst //Chem. Commun. 2000. V. 15. P. 1371–1372.
- Yan H., Li Y., Guo Y., Song Q., Chen Y.Y. Ferromagnetic properties of Cu-doped ZnS: A density functional theory study // Physica B. 2011. V. 406. P. 545–547.
- Fierro J.L. Metal oxides: chemistry & applications. CRC Press, 2006. 182 p.
- Morkoç H., Özgur Ü. Zinc oxide: fundamentals, materials and device technology // WILEY-VCH Verlag GmbH & Co. KGaA. Weinheim, 2009. 485 p.
- Kamarulzaman N., Kasim M.F., Rusdi R. Band gap narrowing and widening of ZnO nanostructures and doped materials // Nanoscale Res. Lett. 2015. V. 10. P. 346–350.
- Kezhen Q., Xiaohan X.X., Amir Z.A., Li M., Wang Q., Liu Shu-yuan, Lin H., Wang G. Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: Experimental and DFT studies //Ceram. Int. 2020. V. 46. № 2. P. 1494–1502.
- Sundararajan M., Sakthivel P., Fernandez A.C. Structural, optical and electrical properties of ZnO–ZnS nanocomposites prepared by simple hydrothermal method // J. Alloys Compd. 2018. V. 768. P. 553–562.
- Verma P., Pandey A.C., Bhargava R.N. Synthesis and characterization: zinc oxide-sulfide nanocomposites // Phys. B Condens. Matter. 2009. V. 404. P. 3894–3897.
- Wu D., Jiang Y., Yuan Y., Wu J., Jiang K. ZnO-ZnS heterostructures with enhanced optical and photocatalytic properties // J. Nanoparticle Res. 2011. V. 13. P. 2875–2886.
- Li F., Jiang Y., Hu L., Liu L., Li Z., Huang X. Structural and luminescent properties of ZnO nanorods and ZnO/ZnS nanocomposites // J. Alloys Compd. 2009. V. 474. P. 531–535.
- Zahiri M., Shafiee M.S., Arabi A.M. Combustion synthesis of ZnO/ZnS nanocomposite phosphors // J. Fluoresc. 2019. V. 29. P. 1227–1239.
- Hitkari G., Singh S., Pandey G. Photoluminescence behavior and visible light photocatalytic activity of ZnO, ZnO/ZnS and ZnO/ZnS/α-Fe2O3 nanocomposites // Trans. Nonferrous Met. Soc. China English Ed. 2018. V. 28. P. 1386–1396.
- Amaliyah N., Mukasa Sh., Nomura Sh., Toyota H., Kitamae T. Plasma in-liquid method for reduction of zinc oxide in zinc nanoparticle synthesis // Mater. Res. Express. 2015. V. 2. P. 025004.
- Coskun F., Cetinkaya S., Eroglu S. Reduction of nickel oxide with ethanol // JOM. 2017. V. 69. P. 987–992.
- Rosmaninho M.G., Moura F.C.C., Souza L.R., Nogueir R.K., Gomes G.M, Nascimento J.S., Pereira M.C., Fabris J.D., Ardisson J.D., Nazzarro M.S., Sapag K., Araújo M.H., Lago R.M. Investigation of iron oxide reduction by ethanol as a potential route to produce hydrogen // Applied Catalysis B: Environmental. 2012. V. 115–116. P. 45–52.
- Satta A., Shamiryan D., Baklanov M., Whelan C., Toan L.Q., Beyer G.P., Vantomme A., Maex K. The removal of copper oxides by ethyl alcohol monitored in situ by spectroscopic ellipsometry // J. Electrochem. Soc. 2003. V. 150. P. G300.
- Cetinkaya S., Eroglu S. Synthesis of cobalt powder by reduction of cobalt oxide with ethanol // JOM. 2018. V. 70. P. 2237–2242.
- Khattab I.S., Bandarkar F., Fakhree M.A.A., Jouyban A. Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323 K // Korean J. Chem. Eng. 2012. V. 29. P. 812–817.
- Vazquez G., Alvarez E., Navaza J.M. Surface tension of alcohol + water from 20 to 50oC // J. Chem. Eng. Data. 1995. V. 40. P. 611–614.
- Григорьев И.С., Мейлихов Е.З. Физические величины: справочник. М.: Энергоатомиздат, 1991. 1232 с.
- Limpert E., Stahel W.A., Abbt M. Log-normal distributions across the sciences: keys and clues // Bioscience. 2001. V. 51. P. 341–352.
- Holgate P. The lognormal characteristic function // Commun. Stat. – Theory Methods. 1989. V. 18. P. 4539–4548.
- Anthony J.W., Bideaux R.A., Bladh K.W., Nichol M.C., Handbook of Mineralogy // Mineralogical Society of America, Chantilly, VA 20151–1110, USA. Режим доступа: http://www.handbookofmineralogy.org/.
- Rosowska J., Kaszewski J., Witkowski B.S., Wachnicki Ł., Wolska A., Klepka M.T., Grabias A., Kuryliszyn-Kudelska I., Godlewski M. ZnO: Fe nanoparticles with Fe fraction up to 10% mol – growth and characterization // J. Lumin. 2023. V. 263. A.N. 119944.
- Kalirajan K., Harikengaram S., Velusubhash S., Murugesan R. Fabrication and characterization studies of capped Cu2+ion doped ZnS nanoparticles // Int. J. Appl. Res. 2015. V. 1. P. 647–649.
- Joshi B.C., Chaudhri A.K. Sol-gel-derived Cu-doped ZnO thin films for optoelectronic applications // ACS Omega. 2022. V. 7. P. 21877–21881.
- Mrabet S., Ihzaz N., Alshammari M., Khlifi N., Ba M., Bessadok M.N., Mejri I.H., El Mir L. Structural, optical, and magnetic properties of V-doped ZnO nanoparticles and the onset of ferromagnetic order // J. Alloys Compd. 2022. V. 920. A.N. 165920.
- Poornaprakash B., Puneetha P., Sangaraju S., Young J.Y., Bandar A.A., Dong-Yeon L., Ramu S., Kim Y.L. Hydrogen evolution properties: Cr doping and V co-doping effect of ZnS nanoparticles // Mater. Lett. 2023. V. 340. A.N. 134186.
Supplementary files
