Composition, morphology, and structure of ultrafine ZnS-ZnO powders alloyes with transition metal oxides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ultrafine ZnO–ZnS powders with additions of d-metal oxides additions, namely, V2O5, MnO, Fe2O3, CoO, NiO, CuO are studied. The alloying the ZnO–ZnS system with d-metals changes the morphology of the synthesized powders. The particle size distribution obeys the lognormal law. The addition of d-metal oxide upon the synthesis of ZnO–ZnS composites shifts the maximum of the particle-size distribution to the larger sizes. The most probable particle size for samples alloyed with iron and cobalt (530 nm) exceeds that of unalloyed sample (320 nm) by more than 1.6 times. All the synthesized samples are found to be characterized by excess oxygen. The zinc, sulfur and oxygen contents in the unalloyed ZnO–ZnS compositions is 48.0, 12.8 and 39.2 at%, respectively. The synthesis of the ZnO–ZnS composition together with transition metal oxides does not change the hexagonal and cubic symmetry of the sulfide and hexagonal symmetry of zinc oxide. The presence of iron leads to an increase in the coherent domain size of the cubic ZnS phase.

Full Text

Restricted Access

About the authors

R. V. S. S. N. Ravikumar

Acharya Nagarjuna University

Email: sko111lev@gmail.com

Department of Physics

India, 522510, Nagarjuna Nagar

B. R. Nemallapudi

Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: sko111lev@gmail.com
Russian Federation, 620002, Ekaterinburg

S. Gundala

Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: sko111lev@gmail.com
Russian Federation, 620002, Ekaterinburg

V. F. Markov

Ural Federal University named after the first President of Russia B.N. Yeltsin; Ural Institute of the State Fire Service of the Ministry of Emergency Situations of Russia

Email: sko111lev@gmail.com
Russian Federation, 620002, Ekaterinburg; 620062, Ekaterinburg

L. N. Maskaeva

Ural Federal University named after the first President of Russia B.N. Yeltsin; Ural Institute of the State Fire Service of the Ministry of Emergency Situations of Russia

Email: sko111lev@gmail.com
Russian Federation, 620002, Ekaterinburg; 620062, Ekaterinburg

A. V. Ishchenko

Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: sko111lev@gmail.com
Russian Federation, 620002, Ekaterinburg

L. G. Skornyakov

Ural Federal University named after the first President of Russia B.N. Yeltsin

Author for correspondence.
Email: sko111lev@gmail.com
Russian Federation, 620002, Ekaterinburg

A. V. Chukin

Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: sko111lev@gmail.com
Russian Federation, 620002, Ekaterinburg

I. S. Kovalev

Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: sko111lev@gmail.com
Russian Federation, 620002, Ekaterinburg

G. V. Zyryanov

Ural Federal University named after the first President of Russia B.N. Yeltsin; Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences

Email: sko111lev@gmail.com
Russian Federation, 620002, Ekaterinburg; 620137, Ekaterinburg

References

  1. Sze S.M., Ng K.K. Physics of semiconductor devices, third edition. John Wiley & Sons, Inc., Hoboken, New Jersey, 2007. 815 p.
  2. Kurnia F., Hart J.N. Band-gap control of zinc sulfide: Towards an efficient visible-light-sensitive photocatalyst // Chem.Phys. Chem. 2015. V. 16. P. 2397–2402.
  3. Воронкова Е.М., Гречушников Б.Н., Дистлер Г.Н., Петров Н.П. Оптические материалы для инфракрасной техники. М.: Наука, 1965. 336 c.
  4. Shionoya S., Yen W.M., Yamamoto H. Phosphor handbook. 2nd ed. CRC Press, 2007. 1055 p.
  5. Kudo A., Sekizawa M. Photocatalytic H2 evolution under visible light irradiationon Zn1–xCuxS solid solution // Catal. Lett. 1999. V. 58. P. 241–243.
  6. Kudo A., Sekizawa M. Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst //Chem. Commun. 2000. V. 15. P. 1371–1372.
  7. Yan H., Li Y., Guo Y., Song Q., Chen Y.Y. Ferromagnetic properties of Cu-doped ZnS: A density functional theory study // Physica B. 2011. V. 406. P. 545–547.
  8. Fierro J.L. Metal oxides: chemistry & applications. CRC Press, 2006. 182 p.
  9. Morkoç H., Özgur Ü. Zinc oxide: fundamentals, materials and device technology // WILEY-VCH Verlag GmbH & Co. KGaA. Weinheim, 2009. 485 p.
  10. Kamarulzaman N., Kasim M.F., Rusdi R. Band gap narrowing and widening of ZnO nanostructures and doped materials // Nanoscale Res. Lett. 2015. V. 10. P. 346–350.
  11. Kezhen Q., Xiaohan X.X., Amir Z.A., Li M., Wang Q., Liu Shu-yuan, Lin H., Wang G. Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: Experimental and DFT studies //Ceram. Int. 2020. V. 46. № 2. P. 1494–1502.
  12. Sundararajan M., Sakthivel P., Fernandez A.C. Structural, optical and electrical properties of ZnO–ZnS nanocomposites prepared by simple hydrothermal method // J. Alloys Compd. 2018. V. 768. P. 553–562.
  13. Verma P., Pandey A.C., Bhargava R.N. Synthesis and characterization: zinc oxide-sulfide nanocomposites // Phys. B Condens. Matter. 2009. V. 404. P. 3894–3897.
  14. Wu D., Jiang Y., Yuan Y., Wu J., Jiang K. ZnO-ZnS heterostructures with enhanced optical and photocatalytic properties // J. Nanoparticle Res. 2011. V. 13. P. 2875–2886.
  15. Li F., Jiang Y., Hu L., Liu L., Li Z., Huang X. Structural and luminescent properties of ZnO nanorods and ZnO/ZnS nanocomposites // J. Alloys Compd. 2009. V. 474. P. 531–535.
  16. Zahiri M., Shafiee M.S., Arabi A.M. Combustion synthesis of ZnO/ZnS nanocomposite phosphors // J. Fluoresc. 2019. V. 29. P. 1227–1239.
  17. Hitkari G., Singh S., Pandey G. Photoluminescence behavior and visible light photocatalytic activity of ZnO, ZnO/ZnS and ZnO/ZnS/α-Fe2O3 nanocomposites // Trans. Nonferrous Met. Soc. China English Ed. 2018. V. 28. P. 1386–1396.
  18. Amaliyah N., Mukasa Sh., Nomura Sh., Toyota H., Kitamae T. Plasma in-liquid method for reduction of zinc oxide in zinc nanoparticle synthesis // Mater. Res. Express. 2015. V. 2. P. 025004.
  19. Coskun F., Cetinkaya S., Eroglu S. Reduction of nickel oxide with ethanol // JOM. 2017. V. 69. P. 987–992.
  20. Rosmaninho M.G., Moura F.C.C., Souza L.R., Nogueir R.K., Gomes G.M, Nascimento J.S., Pereira M.C., Fabris J.D., Ardisson J.D., Nazzarro M.S., Sapag K., Araújo M.H., Lago R.M. Investigation of iron oxide reduction by ethanol as a potential route to produce hydrogen // Applied Catalysis B: Environmental. 2012. V. 115–116. P. 45–52.
  21. Satta A., Shamiryan D., Baklanov M., Whelan C., Toan L.Q., Beyer G.P., Vantomme A., Maex K. The removal of copper oxides by ethyl alcohol monitored in situ by spectroscopic ellipsometry // J. Electrochem. Soc. 2003. V. 150. P. G300.
  22. Cetinkaya S., Eroglu S. Synthesis of cobalt powder by reduction of cobalt oxide with ethanol // JOM. 2018. V. 70. P. 2237–2242.
  23. Khattab I.S., Bandarkar F., Fakhree M.A.A., Jouyban A. Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323 K // Korean J. Chem. Eng. 2012. V. 29. P. 812–817.
  24. Vazquez G., Alvarez E., Navaza J.M. Surface tension of alcohol + water from 20 to 50oC // J. Chem. Eng. Data. 1995. V. 40. P. 611–614.
  25. Григорьев И.С., Мейлихов Е.З. Физические величины: справочник. М.: Энергоатомиздат, 1991. 1232 с.
  26. Limpert E., Stahel W.A., Abbt M. Log-normal distributions across the sciences: keys and clues // Bioscience. 2001. V. 51. P. 341–352.
  27. Holgate P. The lognormal characteristic function // Commun. Stat. – Theory Methods. 1989. V. 18. P. 4539–4548.
  28. Anthony J.W., Bideaux R.A., Bladh K.W., Nichol M.C., Handbook of Mineralogy // Mineralogical Society of America, Chantilly, VA 20151–1110, USA. Режим доступа: http://www.handbookofmineralogy.org/.
  29. Rosowska J., Kaszewski J., Witkowski B.S., Wachnicki Ł., Wolska A., Klepka M.T., Grabias A., Kuryliszyn-Kudelska I., Godlewski M. ZnO: Fe nanoparticles with Fe fraction up to 10% mol – growth and characterization // J. Lumin. 2023. V. 263. A.N. 119944.
  30. Kalirajan K., Harikengaram S., Velusubhash S., Murugesan R. Fabrication and characterization studies of capped Cu2+ion doped ZnS nanoparticles // Int. J. Appl. Res. 2015. V. 1. P. 647–649.
  31. Joshi B.C., Chaudhri A.K. Sol-gel-derived Cu-doped ZnO thin films for optoelectronic applications // ACS Omega. 2022. V. 7. P. 21877–21881.
  32. Mrabet S., Ihzaz N., Alshammari M., Khlifi N., Ba M., Bessadok M.N., Mejri I.H., El Mir L. Structural, optical, and magnetic properties of V-doped ZnO nanoparticles and the onset of ferromagnetic order // J. Alloys Compd. 2022. V. 920. A.N. 165920.
  33. Poornaprakash B., Puneetha P., Sangaraju S., Young J.Y., Bandar A.A., Dong-Yeon L., Ramu S., Kim Y.L. Hydrogen evolution properties: Cr doping and V co-doping effect of ZnS nanoparticles // Mater. Lett. 2023. V. 340. A.N. 134186.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Micrographs of pure ultrafine powders ZnO–ZnS (a) and powders synthesized with additives of oxides V2O5 (b), MnO (c), Fe2O3 (d), CoO (e), NiO (e) and CuO (g).

Download (552KB)
3. Fig. 2. Particle size distribution in ZnO–ZnS powders synthesized without admixture (a) and with oxides V2O5 (b), MnO (c), Fe2O3(d), CoO (e), NiO (e) and CuO (g). Bar charts – experimental histograms, solid The line is an approximating curve in the form of a lognormal distribution. For CuO (g), the dashed line is the lognormal dependence; the dashed line is the Gaussian distribution; the solid line is the total curve.

Download (364KB)
4. 3. Diffractograms of ZnO–ZnS (a) powders synthesized with oxides V2O5 (b), MnO (c), Fe2O3 (d), CoO (e), NiO (e) and CuO (g).

Download (148KB)