Effect of annealing twins on grain boundary migration in high-purity copper

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of grain boundary retardation by annealing twins in pure copper has been experimentally and theoretically investigated. A model that describes the influence of annealing twins on the migration of grain boundaries in pure metals has been proposed. The retarding force from the twins has been demonstrated to be analogous to the Zener retarding force created by incoherent fine particles. An equation has been derived to calculate the retarding force induced by annealing twins. The force has been demonstrated to be inversely proportional to the size of the twins and directly proportional to their volume fraction. The simulation results have been compared with the experimental results. A satisfactory correlation between the theoretical and experimental results has been achieved.

About the authors

N. V. Sakharov

Lobachevskii Nizhny Novgorod State University

Author for correspondence.
Email: nvsaharov@nifti.unn.ru
Russian Federation, Nizhny Novgorod, 603950

V. N. Chuvil’deev

Lobachevskii Nizhny Novgorod State University

Email: nvsaharov@nifti.unn.ru
Russian Federation, Nizhny Novgorod, 603950

References

  1. Rollett A., Rohrer G., Humphreys J. Recrystallization and Related Annealing Phenomena. Elsevier, 2017. 734 p.
  2. Wang S., Song H., Chen Y., Zhang S., Li H. Evolution of annealing twins and recrystallization texture in thin-walled copper tube during heat treatment // Acta Metal. Sinica (English Letters). 2020. V. 33. P. 1618–1626.
  3. Chen X.P., Li L.F., Sun H.F., Wang L.X., Liu Q. Studies on the evolution of annealing twins during recrystallization and grain growth in highly rolled pure nickel // Mater. Sci. Eng. A. 2015. V. 622. P. 108–113.
  4. Horton D., Thomson C.B., Randle V. Aspects of twinning and grain growth in high purity and commercially pure nickel // Mater. Sci. Eng. A. 1995. V. 203. P. 408–414.
  5. Randle V., Rios P.R., Hu Y. Grain growth and twinning in nickel // Scripta Mater. 2008. V. 58. P. 130–133.
  6. Jin Y., Lin B., Rollett A.D., Rohrer G.S., Bernacki M., Bozzolo N. Thermo-mechanical factors influencing annealing twin development in nickel during recrystallization // J. Mater. Sci. 2015. V. 50. P. 5191–5203.
  7. Yang J., Luo J., Li X., Li M. Evolution mechanisms of recrystallized grains and twins during isothermal compression and subsequent solution treatment of GH4586 superalloy // J. Alloys Compounds. 2021. V. 850. P. 156732.
  8. Mandal S., Bhaduri A.K., Sarma V. Studies on twinning and grain boundary character distribution during anomalous grain growth in a Ti-modified austenitic stainless steel // Mater. Sci. Eng. A. 2009. V. 515. P. 134–140.
  9. Chen X., Lin Y., Wu F. EBSD study of grain growth behavior and annealing twin evolution after full recrystallization in a nickel-based superalloy // J. Alloys Compounds. 2017. V. 724. P. 198–207.
  10. Li Z., Zhang L., Sun N., Sun Y., Shan A. Effects of prior deformation and annealing process on microstructure and annealing twin density in a nickel based alloy // Mater. Character. 2014. V. 95. P. 299–306.
  11. Cui C.Y., Gu Y.F., Yuan Y., Osada T., Harada H. Enhanced mechanical properties in a new Ni–Co base superalloy by controlling microstructures // Mater. Sci. Eng. A. 2011. V. 528. P. 5465–5469.
  12. Gao Y., Ding Y., Chen J., Xu J., Ma Y., Wang X. Effect of twin boundaries on the microstructure and mechanical properties of Inconel 625 alloy // Mater. Sci. Eng. A. 2019. V. 767. P. 138361.
  13. Qian M., Lippold J.C. The effect of annealing twin-generated special grain boundaries on HAZ liquation cracking of nickel-base superalloys // Acta Mater. 2003. V. 51. P. 3351–3361.
  14. Bober D., Lind J., Mulay R., Rupert T., Kumar M. The formation and characterization of large twin related domains // Acta Mater. 2017. V. 129. P. 500–509.
  15. Wang W., Brisset F., Helbert A.L., Solas D., Drouelle I., Mathon M.H., Baudin T. Influence of stored energy on twin formation during primary recrystallization // Mater. Sci. Eng. A. 2014. V. 589. P. 112–118.
  16. Baudin T., Etter A.L., Penelle R. Annealing twin formation and recrystallization study of cold-drawn copper wires from EBSD measurements // Mater. Character. 2007. V. 58. P. 947–952.
  17. McCarley J., Tin S. Understanding the effects of recrystallization and strain induced boundary migration on ∑3 twin boundary formation in Ni-base superalloys during iterative sub-solvus annealing // Mater. Sci. Eng. A. 2019. V. 740–741. P. 427–438.
  18. Ebrahimi G.R., Momeni A., Ezatpour H.R., Jahazi M., Bocher P. Dynamic recrystallization in Monel400 Ni-Cu alloy: Mechanism and role of twinning // Mater. Sci. Eng. A. 2019. V. 744. P. 376–385.
  19. Jin Y., Lin B., Bernacki M., Rohrer G.S., Rollett A.D., Bozzolo N. Annealing twin development during recrystallization and grain growth in pure nickel // Mater. Sci. Eng. A. 2014. V. 597. P. 295–303.
  20. Sharma N., Shekhar S. New insights into the evolution of twin boundaries during recrystallization and grain growth of low-SFE FCC alloys // Mater. Character. 2020. V. 159. 110015.
  21. Du Z., Liu X., Gui J., Ke Y., Zhang L. Influence of MnS inclusions on dynamic recrystallization and annealing twins formation during thermal deformation // J. Mater. Research Technol. 2022. V. 16. P. 1371–1387.
  22. Pande C., Imam M. Grain growth and twin formation in boron-doped nickel polycrystals // Mater. Sci. Eng. A. 2009. V. 512. P. 82–86.
  23. Wang L.X., Chen X.P., Chen D., Sun H.F., Liu Q. Effect of preferential orientation on the annealing twins during the low temperature treatment in nickel // Materials Science and Engineering A. 2016. V. 676. P. 48–55.
  24. Fullman R.L., Fisher J.C. Formation of annealing twins during grain growth // J. Appl. Phys. 1951. V. 22. P. 1350–1355.
  25. Gleiter H. The formation of annealing twins // Acta Metal. 1969. V. 17. P. 1421–1428.
  26. Meyers M.A., Murr L.E. A model for the formation of annealing twins in fcc metals and alloys // Acta Metal. 1978. V. 26. P. 951–962.
  27. Huber J., Hatherly M. Nucleation of recrystallized grains in heavily cold-worked α-brass // Metal Sci. 1979. V. 13. P. 665–669.
  28. Grovenor C.R.M., Smith D.A., Goringe M.J. Nucleation and migration of high angle grain boundaries in bilayer foils. I: Nucleation // Thin Solid Films. 1980. V. 74. P. 257–267.
  29. Mahajan S., Pande C.S., Imam M.A., Rath B.B. Formation of annealing twins in fcc. crystals // Acta Mater. 1997. V. 45. P. 2633–2638.
  30. Cahoon J.R., Li Q., Richards N.L. Microstructural and processing factors influencing the formation of annealing twins // Mater. Sci. Eng. A. 2009. V. 526. P. 56–61.
  31. Грязнов М.Ю., Сысоев А.Н., Чувильдеев В.Н. Внутреннее трение в микрокристаллических металлах. Часть 1. Экспериментальные исследования микрокристаллических меди и никеля // Материаловедение. 1999. № 5. C. 107–116.
  32. Bachmann F., Hielscher R., Schaeben H. Texture Analysis with MTEX – Free and Open Source Software Toolbox // Solid State Phenomena. 2010. V. 160. P. 63–68.
  33. Чувильдеев В.Н. Неравновесные границы зерен в металлах. Теория и приложения. М.: Физматлит, 2004. 304 с.
  34. Сахаров Н.В., Чувильдеев В.Н. Исследование влияния примесей на первичную рекристаллизацию в чистых металлах // ФММ. 2022. Т. 123. № 8. С. 851–858.
  35. Taylor J.W. An evaluation of interface energies in metallic systems // J. Institute of Metals. 1957–1958. V. 86. P. 456–463.
  36. Орлов А.Н., Перевезенцев В.Н., Рыбин В.В. Границы зерен в металлах. М.: Металлургия, 1980. 156 с.
  37. Смитлз К.Дж. Металлы. Справочник. М.: Металлургия, 1980. 445 с.

Supplementary files

Supplementary Files
Action
1. JATS XML