Effect of alternate irradiation with O+ and n+ ions on the composition, structure, and electrochemical properties of a Ti–Al–V alloy

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

the chemical composition, surface morphology and electrochemical properties of the Ti–Al–V alloy in the initial state and after irradiation with O+ ions and alternating irradiation with O+ and N+ ions with different doses of irradiation dose of N+ ions are studied. Under irradiation with O+ ions, the active oxidation of Ti atoms is shown to occurs, which is accompanied by the formation of titanium oxides and hydroxides. In the course of subsequent irradiation with N+ ions, the accumulation of nitrogen and formation of titanium nitride TiN are found to occur to lower concentrations as compared to those observed without the preliminary irradiation with O+ ions. It is assumed that this is due to the higher chemical activity of oxygen with respect to titanium atoms, as compared to that of nitrogen.

Full Text

Restricted Access

About the authors

V. L. Vorob'ev

Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: Vasily_L.84@udman.ru
Russian Federation, 426067, Izhevsk

V. S. Gladysheva

Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: Vasily_L.84@udman.ru
Russian Federation, 426067, Izhevsk

P. V. Bykov

Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: Vasily_L.84@udman.ru
Russian Federation, 426067, Izhevsk

S. G. Bystrov

Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: Vasily_L.84@udman.ru
Russian Federation, 426067, Izhevsk

I. N. Klimova

Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: Vasily_L.84@udman.ru
Russian Federation, 426067, Izhevsk

A. V. Syugaev

Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: Vasily_L.84@udman.ru
Russian Federation, 426067, Izhevsk

А. А. Kolotov

Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: Vasily_L.84@udman.ru
Russian Federation, 426067, Izhevsk

V. Ya. Bayankin

Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: Vasily_L.84@udman.ru
Russian Federation, 426067, Izhevsk

References

  1. Козлов Д.А., Крит Б.А., Столяров В.В., Овчинников В.В. Ионно-лучевое модифицирование трибологических свойств хромистой стали // Физика и химия обр. материалов. 2010. № 1. С. 50–54.
  2. Zhang J., Peng S., Zhang A., Wen J., Zhang T., Xu Y., Yan S., Ren H. Nitrogen ion implantation on the mechanical properties of AISI 420 martensitic stainless steel // Surface & Coatings Technology. 2016. V. 305. P. 132–138. doi: 10.1016/J.SURFCOAT.2016.08.022
  3. Hug E., Thibault S., Chateigner D., Maunoury L. Nitriding aluminum alloys by N-multicharged ions implantation: Correlation between surface strengthening and microstructure modifications // Surface & Coatings Technology. 2012. V. 206. P. 5028–5035. doi: 10.1016/J.SURFCOAT.2012.04.033
  4. Thair L., Mudali U.K., Rajagopalan S., Asokamani R., Raj B. Surface Characterization of Passive Film Formed on Nitrogen Ion Implanted Ti-6Al-4V and Ti-6Al-7Nb Alloys using Sims // Corrosion Science. 2003. V. 45. № 9. P. 1951–1967. doi: 10.1016/S0010-938X(03)00027-1
  5. Figueroa R., Abreu C.M., Cristуbal M.J., Pena G. Effect of nitrogen and molybdenum ion implantation in the tribological behavior of AA7075 aluminum alloy // Wear. 2012. V. 276. P. 53–60. doi: 10.1016/J.WEAR.2011.12.005
  6. Jin J., Chen Y., Gao K., Huang X. The effect of ion implantation on tribology and hot rolling contact fatigue of Cr4Mo4Ni4V bearing steel // Appl. Surface Sci. 2014. V. 305. P. 93–100. doi: 10.1016/j.apsusc.2014.02.174
  7. Rautray T.R., Narayanan R., Kim K.H. Ion implantation of titanium based biomaterials // Progress Mater. Sci. 2011. V. 56. P. 1137–1177.
  8. doi: 10.1016/j.pmatsci.2011.03.002
  9. Комаров Ф.Ф. Ионная имплантация в металлы. Металлургия: Энергоатомиздат, 1990. 262 с.
  10. Овчинников В.В. Радиационно-динамические эффекты. Возможности формирования уникальных структурных состояний и свойств конденсированных сред // Успехи физических наук. 2008. Т. 178. № 9. С. 992–1001.
  11. Овчинников В.В., Макаров Е.В., Гущина Н.В. Образование аустенита в α-сплаве Fe–Mn после холодной пластической деформации в условиях быстрого нагрева пучком ионов Ar+ до 299°C // ФММ. 2019. Т 120. № 12. С. 1307–1313.
  12. Сунгатулин А.Р., Сергеев В.П., Федорищева М.В., Сергеев О.В. Влияние обработки пучками ионов (Cr+B) поверхностного слоя стали 38ХН3МФА на износостойкость // Известия Томского политехнического ун-та. 2009. Т. 315. № 2. С. 134–137.
  13. Budzynski P. Long-range effect in nitrogen ion-implanted AISI 316L stainless steel // Nuclear Instruments and Methods in Physics Research B. 2015. V. 342. P. 1–6. doi: 10.1016/J.NIMB.2014.09.004
  14. Богомолов Д.Б., Городецкий А.Е., Алимов В.Х. Структурно-фазовые превращения при ионной имплантации кислорода в титан // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2012. № 7. С. 31–40.
  15. Братушка С.Н., Маликов Л.В. Ионно-плазменная модификация титановых сплавов // Вопр. атомной науки и техники. 2011. № 6. С. 126–140.
  16. Воробьёв В.Л., Быков П.В., Колотов А.А., Гильмутдинов Ф.З., Аверкиев И.К., Баянкин В.Я. Особенности формирования поверхностных слоев нержавеющей стали и титанового сплава имплантацией ионов N+ // ФММ. 2021. Т. 122. № 12. С. 1302–1308.
  17. Воробьев В.Л., Гильмутдинов Ф.З., Быков П.В., Баянкин В.Я., Колотов А.А. Влияние имплантации ионов О+ на состав и химическое строение наноразмерных поверхностных слоев медно-никелевого сплава Cu50Ni50 // ФММ. 2018. Т. 119. № 9. С. 903–908.
  18. Vorobyev V.L., Bykov P.V., Bystrov S.G., Kolotov A.A., and Bayankin V. Ya. The effect of the chemical activity of the implanted element to metal alloy components on the formation of surface layers under ion irradiation // Diagnostics, Resource and Mechanics of materials and structures. 2023. № 3. P. 29–43. doi: 10.17804/2410-9908.2023.3.029-043
  19. Ziegler J.F., Biersack J.P., Ziegler M.D. SRIM – The Stopping and Ranges of Ions in Solids (SRIM Co., Chester, 2008), http://www.srim.org (дата обращения 27.09.2023).
  20. Рабинович В.А., Хавин З.Я. Краткий химический справочник. Издание 2-е, исправленное и дополненное. Ленинград: Химия, 1978. 392 с.
  21. Болгар А.С., Литвиенко В.Ф. Термодинамические свойства нитридов. Киев: Наук. Думка, 1980. 282 с.
  22. Воробьев В.Л., Быков П.В., Баянкин В.Я., Гильмутдинов Ф.З. Формирование наноразмерных поверхностных слоев нержавеющей стали 03Х17Н12М2 имплантацией ионов N+ // Журнал технической физики. 2019. Т. 89. Вып. 8. С. 1248–1253.
  23. Воробьев В.Л., Быков П.В., Баянкин В.Я., Шушков А.А., Вахрушев А.В. Изменение механических свойств углеродистой стали в зависимости от скорости набора дозы ионов азота и аргона // ФММ. 2014. Т. 115. № 8. С. 853–857.
  24. Решетников С.М., Бакиева О.Р., Борисова Е.М., Воробьев В.Л., Гильмутдинов Ф.З., Картапова Т.С., Баянкин В.Я. Влияние имплантации ионов азота на коррозионно-электрохимические и другие свойства армко-железа. Ч.II. Коррозионно-электрохимическое поведение образцов армко-железа, подвергнутых имплантации ионами азота // Коррозия: материалы, защита. 2018. № 4. С. 1–8.
  25. NIST XPS database, spectrum search menu [Electronic resource]. URL: https://srdata.nist.gov/xps/EnergyTypeValSrch.aspx (дата обращения 27.09.2023).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution profiles in samples of titanium alloy VT6 before implantation (a) and after implantation of N+ ions (b).

Download (144KB)
3. Fig. 2. Profiles of the distribution of elements in VT6 alloy samples after implantation of O+ ions (a), after alternate irradiation with O+ and N+ ions with a dose of N+ 1018 ions/cm2 (b) and after alternate irradiation with O+ and N+ ions with a dose of N+ 3·1018 ions/cm2 (in).

Download (183KB)
4. Fig. 3. Nitrogen distribution profiles in VT6 samples combined in one graph: 1 –implantation of N+ ions, 2 – implantation of O+ and N+ ions with a dose of N+ 3·1018 ions/cm2, 3 – implantation of O+ and N+ ions with a dose of N+ 1018 ions/cm2.

Download (56KB)
5. Fig. 4. XFE spectrum of O 1s obtained from a depth of ~ 20 nm in the BT6 sample after implantation of N+ (a), after alternate irradiation with O+ and N+ ions with a dose of N+ 1018 ions/cm2 (b), after alternate irradiation with O+ and N+ ions the dose of ions is N+ 3·1018 ions / cm2 (in).

Download (125KB)
6. Fig. 5. The XFE spectrum of N 1s obtained from a depth of ~20 nm in the BT6 sample after implantation of N+ (a), after alternate irradiation with O+ and N+ ions with a dose of N+ 1018 ions/cm2 (b), after alternate irradiation with O+ and N+ ions the dose of ions is N+ 3·1018 ions / cm2 (in).

Download (116KB)
7. Fig. 6. The RF spectrum of Ti 2p obtained from a depth of ~ 20 nm in the initial BT6 sample (1), in the BT6 sample after implantation of N+ ions (2), after alternate irradiation with a dose of N+ 1018 ions/cm2 (3), after alternate irradiation with a dose of N ions+ 3·1018 ion/cm2 (4).

Download (47KB)
8. Fig. 7. AFM images of the surface of a sample of titanium alloy VT6 before implantation (a), after implantation of O+ ions (b), after alternate irradiation with a dose of N+ 1018 ions/cm2 (c) and after alternate irradiation with a dose of N+ 3·1018 ions/cm2 (d).

Download (338KB)
9. Fig. 8. Block size distributions on the surface of samples of titanium alloy VT6 before implantation (a), after implantation of O+ ions (b), after alternate irradiation with O+ and N+ ions with a dose of N+ 1018 ions/cm2 (c), after alternate irradiation with O+ and N+ ions with a dose of N+ 3·1018 ions/cm2 (g).

Download (538KB)
10. Fig. 9. Voltage curves obtained from samples in 3.5% NaCl solution on a logarithmic scale: 1 – the initial sample, 2 – after irradiation with O+ ions, 3 – after alternate irradiation with O+ and N+ ions with a dose of N+ 1018 ions/cm2, 4 – after alternate ion irradiation O+ and N+ with a dose of N+ ions 3· 1018 ions/cm2.

Download (78KB)