Model for Prediction of the Size of Austenite Grains Upon Hot Deformation of Low-Alloyed Steels Taking into Account the Evolution of the Dislocation Structure
- Authors: Gorbachev I.I.1, Korzunova E.I.1, Popov V.V.1, Khabibulin D.M.2, Urtsev N.V.2
-
Affiliations:
- Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
- Research and Technology Center “Ausferr”,
- Issue: Vol 124, No 12 (2023)
- Pages: 1244-1252
- Section: СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ
- URL: https://innoscience.ru/0015-3230/article/view/663054
- DOI: https://doi.org/10.31857/S0015323023601344
- EDN: https://elibrary.ru/CKRYHP
- ID: 663054
Cite item
Abstract
Abstract—
A model is proposed to describe the behavior of the average size of austenite grains and the dislocation structure of low-alloyed steels during and after hot deformation. The model takes into account the processes of recovery, dynamic recrystallization of grains and normal grain growth, as well as the strain-induced precipitation of carbonitride phases and their evolution. The calculation results are compared with the experimental data available in the literature and their satisfactory agreement is shown.
Keywords
About the authors
I. I. Gorbachev
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Author for correspondence.
Email: gorbachev@imp.uran.ru
Russia, 620108, Ekaterinburg
E. I. Korzunova
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: gorbachev@imp.uran.ru
Russia, 620108, Ekaterinburg
V. V. Popov
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: gorbachev@imp.uran.ru
Russia, 620108, Ekaterinburg
D. M. Khabibulin
Research and Technology Center “Ausferr”,
Email: gorbachev@imp.uran.ru
Russia, 455000, Magnitogorsk
N. V. Urtsev
Research and Technology Center “Ausferr”,
Email: gorbachev@imp.uran.ru
Russia, 455000, Magnitogorsk
References
- Roberts W., Ahlblom B. A nucleation criterion for dynamic recrystallization during hot working // Acta Metal. 1978. V. 26. № 5. P. 801–813. https://doi.org/10.1016/0001-6160(78)90030-5
- Madej L., Sitko M., Pietrzyk M. Perceptive comparison of mean and full field dynamic recrystallization models // Archives of Civil and Mechanical Engineering. 2016. V. 16. № 4. P. 801–813. https://doi.org/10.1016/j.acme.2016.03.010
- Roucoules C., Pietrzyk M., Hodgson P.D. Analysis of work hardening and recrystallization during the hot working of steel using a statistically based internal variable model // Mater. Sci. Eng.: A. 2003. V. 339. № 1–2. P. 1–9. https://doi.org/10.1016/S0921-5093(02)00120-X
- Sarkar S., Moreau A., Militzer M., Poole W.J. Evolution of austenite recrystallization and grain growth using laser ultrasonics // Metall and Mat Trans. A. 2008. V. 39. P. 897–907. https://doi.org/10.1007/s11661-007-9461-6
- Liang Sh., Levesque D., Legrand N., Zurob H.S. Use of in-situ laser-ultrasonics measurements to develop robust models combining deformation, recovery, recrystallization and grain growth // Materialia. 2020. V. 12. 100812. https://doi.org/10.1016/j.mtla.2020.100812
- Рудской А.И., Колбасников Н.Г. Цифровые двойники технологий термомеханической обработки стали // Металловедение и термич. обр. металлов. 2020. № 1. С. 4–11. https://doi.org/10.1007/s11041-020-00505-4
- Sandström R., Lagneborg R. A model for hot working occurring by recrystallization // Acta Metall. 1975. V. 23. P. 387–398. https://doi.org/10.1016/0001-6160(75)90132-7
- Lenart J.G., Pietyrzyk M. Cserrr L. Mathematical and physical simulation of the properties of hot rolled products. Amsterdam-Lausanne-New York-Oxford-Shannon-Singapore-Tokyo: Elsevie, 1999. 264 p. https://doi.org/10.1016/B978-0-08-042701-0.X5000-1
- Timoshenkov A., Warczok P., Albu M., Klarner J., Kozeschnik E., Bureau R., Sommitsch C. Modelling the dynamic recrystallization in C–Mn micro-alloyed steel during thermo-mechanical treatment using cellular automata // Comput. Mater. Sci. 2014. V. 24. P. 85–94. https://doi.org/10.1016/j.commatsci.2014.02.017
- Buken H., Kozeschnik E. A model for static recrystallization with simultaneous precipitation and solute drag // Metall. Mater. Trans. A. 2017. V. 48. P. 2812–2818. https://doi.org/10.1007/s11661-016-3524-5
- Горбачев И.И., Пасынков А.Ю., Попов В.В. Моделирование влияния горячей деформации на размер аустенитного зерна низколегированных сталей с карбонитридным упрочнением // ФММ. 2018. Т. 119. № 6. С. 582–589. https://doi.org/10.1134/S0031918X18060078
- Горбачев И.И., Пасынков А.Ю., Попов В.В. Моделирование эволюции карбонитридных частиц сложного состава при горячей деформации низколегированной стали // ФММ. 2018. Т. 119. № 8. С. 817–826. https://doi.org/10.1134/S0031918X18080021
- Popov V.V. Simulation of dissolution and coarsening of MnS precipitates in Fe-Si // Philosophical Magazine A. 2002. V. 82. № 1. P. 17–27. https://doi.org/10.1080/01418610208239993
- Popov V.V., Gorbachev I.I., Alyabieva J.A. Simulation of precipitates evolution in multiphase multicomponent systems with consideration of nucleation // Philosoph. Magazine. 2005. V. 85. № 22. P. 2449–2467. https://doi.org/10.1080/14786430500070750
- Popov V.V., Gorbachev I.I., Pasynkov A.Yu. Simulation of precipitates evolution in multiphase multicomponent systems with consideration of nucleation // Philosoph. Magazine. 2016. V. 96. № 35. P. 3632–3653. https://doi.org/10.1080/14786435.2016.1232867
- Горбачев И.И., Попов В.В., Пасынков А.Ю. Моделирование эволюции выделений двух карбонитридных фаз в сталях с Nb и Ti при изотермическом отжиге // ФММ. 2013. Т. 114. № 9. С. 807–817.
- Ding R., Guo Z.X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization // Acta Mater. 2001. V. 49. № 10. P. 3163–3175. https://doi.org/10.1016/S1359-6454(01)00233-6
- Hellman P., Hillert M. On the effect of second-phase particles on grain growth // Scand. J. Metall. 1975. V. 4. P. 211–219.
- Humphreys F.J., Hatherly M. Recrystallization and related annealing phenomena / 2nd ed. Oxford, Elsevier, 2004. 574 p. https://doi.org/10.1016/B978-0-08-044164-1.X5000-2
- Горбачёв И.И., Пасынков А.Ю., Попов В.В. Прогнозирование размера аустенитного зерна микролегированных сталей на основе моделирования эволюции карбонитридных выделений // ФММ. 2015. Т. 116. № 11. С. 1184–1191. https://doi.org/10.1134/S0031918X1511006X
- Горбачев И.И., Корзунова Е.И., Попов В.В., Хабибулин Д.М., Урцев Н.В. Моделирование роста аустенитного зерна в низколегированных сталях при аустенитизации // ФММ. 2023. Т. 124. № 3. С. 303–309. https://doi.org/10.1134/S0031918X23600100
- Zener C. цитиpyeтcя пo Gladman T. On the theory of the effect of precipitate particles on grain growth in metals // Proc. R. Soc. Lond. A. 1966. V. 294. P. 298–309. https://doi.org/10.1098/rspa.1966.0208
- Estrin Y., Mecking H. A unified phenomenological description of work hardening and creep based on one-parameter models // Acta metall. 1984. V. 32. № 1. P. 57–70. https://doi.org/10.1016/0001-6160(84)90202-5
- Sandström R. Subgrain growth occurring by boundary migration // Acta Metallurgica. 1977. V. 25. № 8. P. 905–911. https://doi.org/10.1016/0001-6160(77)90177-8
- Zener C., Hollomon J. H. Effect of strain rate upon plastic flow of steel // Journal of Applied Physics. 1944. V. 15. № 12. P. 22–32. https://doi.org/10.1063/1.1707363
- Zurob H.S., Bréchet Y., Dunlop J. Quantitative criterion for recrystallization nucleation in single-phase alloys: Prediction of critical strains and incubation times // Acta Mater. 2006. V. 54. № 15. P. 3983–3990. https://doi.org/10.1016/j.actamat.2006.04.028
- Горбачев И.И., Попов В.В., Пасынков А.Ю. Термодинамическое моделирование карбонитридообразования в сталях с Nb и Ti // ФММ. 2012. Т. 113. № 7. С. 727–735. https://doi.org/10.1134/S0031918X1207006X
- Diffusion in Solid Metals and Alloys // In Defect and Diffusion Forum. 1970. V. 4. P. 296–340. https://doi.org/10.4028/www.scientific.net/ddf.4.296
- Liu W.J., Jonas J. Characterisation of critical nucleus/matrix interface: Application to Cu–Co alloys and microalloyed austenite // Mater. Sci. Technol. 1989. V. 5. P. 8–12. https://doi.org/10.1179/mst.1989.5.1.8
- Pietrzyk M. Through-process modelling of microstructure evolution in hot forming of steels // J. Mater. Proces. Techn. 2002. V. 125–126. P. 53–62. https://doi.org/10.1016/S0924-0136(02)00285-6
- Banerjee K., Militzer M., Perez M., Wang X. Nonisothermal austenite grain growth kinetics in a microalloyed X80 linepipe steel // Metal. Mater. Trans. A. 2010. V. 41A. № 12. P. 3161–3172. https://doi.org/10.1007/s11661-010-0376-2
- Uhm S., Moon J., Lee Ch., Yoon J., Lee B. Prediction model for the austenite grain size in the coarse grained heat affected zone of Fe–C–Mn steels: Considering the effect of initial grain size on isothermal growth behavior // ISIJ International. 2004. V. 44. № 7. P. 1230–1237. https://doi.org/10.2355/isijinternational.44.1230
- Hillert M. On the theory of normal and abnormal grain growth // Acta Met. 1965. V. 13. P. 227–238. https://doi.org/10.1016/0001-6160(65)90200-2
- Rios P.R. Overview no. 62: A theory for grain boundary pinning by particles // Acta Metallurgica. 1987. V. 35. № 12. P. 2805–2814. https://doi.org/10.1016/0001-6160(87)90280-X
- Liu W.J., Jonas J. Nucleation kinetics of Ti carbonitride in microalloyed austenite // Metall. Trans. 1989. V. A 20. P. 689–697. https://doi.org/10.1007/BF02667586
- Serajzadeh S. A mathematical model for evolution of flow stress during hot deformation // Mater. Letters. 2005. V. 59. P. 3319–3324. https://doi.org/10.1016/j.matlet.2005.05.065
- Serajzadeh S. Modelling dynamic softening processes during hot working // Mater. Sci. Eng. 2005. A. 404. P. 130–137. https://doi.org/10.1016/j.msea.2005.05.040
- Bäcke L. Modeling the Microstructural Evolution during Hot Deformation of Microalloyed Steels // Doctoral thesis. 2009. https://www.diva-portal.org/ smash/get/diva2:216454/FULLTEXT01.pdf.
- Штремель М.А. Прочность сплавов. Часть II. Деформация. М.: МИСиС, 1997. 527 с.
- Горелик С.С., Добаткин С.В., Капуткина Л.М. Рекристаллизация металлов и сплавов. 3-е изд. М.: МИСиС, 2005. 432 с.
Supplementary files
