Analysis of phase composition of the Al–Cu–Mn–Ca system as a base for heat-resistant aluminum alloys

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The phase composition of the Al–Cu–Ca–Mn alloys containing (wt %) 6% Cu, 2% Mn, and to 4% Ca is analyzed. The Al–Cu–Ca–Mn phase diagram in the Al corner is proposed, according to which five four-phase regions with the participation of Al-based solid solution (Al) and various intermetallic compounds are possible to exist in the solid state. The Al–6% Cu–1% Ca–2% Mn composition is suggested as the base for developing new-generation heat-resistant (hot-strength) alloys. In the case of such contents of alloying elements, the combination of aluminum matrix containing Al20Cu2Mn3 dispersoids and (Al) + Al27Ca3Cu7 eutectic characterized by fine structure is possible.

Full Text

Restricted Access

About the authors

N. A. Belov

National Research Technological University MISiS

Email: kovalev-andrey-i@mail.ru

кафедра обработки металлов давлением

Russian Federation, Moscow, 119049

A. I. Kovalev

South Ural State University

Author for correspondence.
Email: kovalev-andrey-i@mail.ru
Russian Federation, Chelyabinsk, 454080

D. A. Vinnik

South Ural State University; Moscow Institute of Physics and Technology, MIPT; St. Petersburg State University

Email: kovalev-andrey-i@mail.ru
Russian Federation, Chelyabinsk, 454080; Dolgoprudny, 141701; St. Petersburg, 198504

K. A. Tsydenov

National Research Technological University MISiS

Email: kovalev-andrey-i@mail.ru

кафедра обработки металлов давлением

Russian Federation, Moscow, 119049

S. O. Cherkasov

National Research Technological University MISiS

Email: kovalev-andrey-i@mail.ru

кафедра обработки металлов давлением

Russian Federation, Moscow, 119049

References

  1. Kaufman J.G., Rooy E.L. Aluminum Alloy Castings // ASM International. 2004. 340 p.
  2. Ashkenazi D. How aluminum changed the world: A metallurgical revolution through technological and cultural perspectives // Technol. Forecast. Soc. Change. 2019. V. 143. P. 101–113.
  3. Pedneault J., Majeau-Bettez G., Margni M. Sector‐specific scenarios for future stocks and flows of aluminum: An analysis based on shared socioeconomic pathways // J. Ind. Ecol. 2022. V. 26. № 5. P. 1728–1746.
  4. Sivanur K., Umananda K.V., Pai D. Advanced materials used in automotive industry-a review // AIP Conf. Proc. 2021. V. 2317. № 1. P. 020032.
  5. Zheng K., Politis D.J., Wang L., Lin J. A review on forming techniques for manufacturing lightweight complex – shaped aluminium panel components // Int. J. Light. Mater. Manuf. 2018. V. 1. № 2. P. 55–80.
  6. Белов Н.А., Белов В.Д., Савченко С.В., Самошина М.Е., Чернов В.А., Алабин А.Н. Поршневые силумины // Руда и металлы. 2011. 246 c.
  7. Cai Q., Fang C., Lordan E., Wang Y., Chang I.T.H., Cantor B. A novel Al–Si–Ni–Fe near-eutectic alloy for elevated temperature applications // Scr. Mater. 2023. V. 237. P. 115707.
  8. Mirzaee-Moghadam M., Lashgari H.R., Zangeneh S., Rasaee S., Seyfor M., Asnavandi M., Motjahedi M. Dry sliding wear characteristics, corrosion behavior, and hot deformation properties of eutectic Al–Si piston alloy containing Ni-rich intermetallic compounds // Mater. Chem. Phys. 2022. V. 279. P. 125758.
  9. Govind V., Praveen K.K., Vignesh R., Vishnu A., Vishnu J., Manivasagam G., Shankar K. Fretting Wear Behavior of Al–Si–Mg–Ni Hypoeutectic Alloy with Varying Solutionizing Time // Silicon. 2023. V. 15. № 10. P. 4193–4206.
  10. Sha M., Wu S., Wan L., Lü S. Effect of Heat Treatment on Morphology of Fe-Rich Intermetallics in Hypereutectic Al–Si–Cu–Ni Alloy with 1.26 pct Fe // Metall. Mater. Trans. A. 2013. V. 44. № 13. P. 5642–5652.
  11. Cai Q., Lordan E., Wang S., Liu G., Mendis C.L., Chang I.T.H., Ji S. Die-cast multicomponent near-eutectic and hypoeutectic Al–Si–Ni–Fe–Mn alloys: Microstructures and mechanical properties // Mater. Sci. Eng. A. 2023. V. 872. P. 144977.
  12. Kaiser M.S. Solution Treatment Effect on Tensile, Impact and Fracture Behaviour of Trace Zr Added Al-12Si-1Mg-1Cu Piston Alloy // J. Inst. Eng. Ser. D. 2018. V. 99. № 1. P. 109–114.
  13. Lin G., Li K., Feng Y., Song W., Xiao M. Effects of La–Ce addition on microstructure and mechanical properties of Al-18Si-4Cu-0.5Mg alloy // Trans. Nonferrous Met. Soc. China. 2019. V. 29. № 8. P. 1592–1600.
  14. Ahmad R., Asmael M.B.A., Shahizan N.R., Gandouz S. Reduction in secondary dendrite arm spacing in cast eutectic Al–Si piston alloys by cerium addition // Int. J. Miner. Metall. Mater. 2017. V. 24. № 1. P. 91–101.
  15. Belov N.A., Alabin A.N. Heat resistant aluminum base alloy and wrought semifinished product fabrication method: pat. WO 2014/088449. Russia. 2017.
  16. Belov N.A., Akopyan T.K., Shurkin P.K., Korotkova N.O. Comparative analysis of structure evolution and thermal stability of сommercial AA2219 and model Al-2wt.%Mn-2wt.%Cu cold rolled alloys // J. Alloys Compd. 2021. V. 864. P. 158823.
  17. Belov N.A., Korotkova N.O., Akopyan T.K., Tsydenov K.A. Simultaneous Increase of Electrical Conductivity and Hardness of Al-1.5 wt.% Mn Alloy by Addition of 1.5 wt.% Cu and 0.5 wt.% Zr // Metals (Basel). 2019. V. 9. № 12. P. 1246.
  18. Belov N.A., Naumova E.A., Eskin D.G. Casting alloys of the Al–Ce–Ni system: microstructural approach to alloy design // Mater. Sci. Eng. A. 1999. V. 271. № 1–2. P. 134–142.
  19. Czerwinski F. Cerium in aluminum alloys // J. Mater. Sci. 2020. V. 55. № 1. P. 24–72.
  20. Cengiz S., Aboulfadl H., Thuvander M. Effect of Ce addition on microstructure, thermal and mechanical properties of Al–Si alloys // Mater. Today Commun. 2023. V. 34. P. 105518.
  21. Gumaste A., Dhal A., Agrawal P., Haridas R.S., Vasudevan V.K., Weiss D., Mishra R.S. A Novel Approach for Enhanced Mechanical Properties in Solid-State Additive Manufacturing by Additive Friction Stir Deposition Using Thermally Stable Al–Ce–Mg Alloy // JOM. 2023. V. 75. № 10. P. 4185–4198.
  22. Naumova E.A. Use of Calcium in Alloys: From Modifying to Alloying // Russ. J. Non-Ferrous Met. 2018. V. 59. № 3. P. 284–298.
  23. Naumova E.A., Akopyan T.K., Letyagin N.V., Vasina M.A. Investigation of the structure and properties of eutectic alloys of the Al–Ca–Ni system containing REM // Non-ferrous Metals. 2018. № 2. P. 24–29.
  24. Mondal D.P., Jha N., Badkul A., Das S., Yadav M.S., Jain P. Effect of calcium addition on the microstructure and compressive deformation behaviour of 7178 aluminium alloy // Mater. Des. 2011. V. 32. № 5. P. 2803–2812.
  25. Letyagin N.V., Musin A.F., Sichev L.S. New aluminum-calcium casting alloys based on secondary raw materials // Mater. Today Proc. 2021. V. 38. P. 1551–1555.
  26. Akopyan T.K., Belov N.A., Letyagin N.V., Cherkasov S.O., Nguen X.D. Description of the New Eutectic Al–Ca–Cu System in the Aluminum Corner // Metals (Basel). 2023. V. 13. № 4. P. 802.
  27. Belov N.A., Naumova E.A., Doroshenko V.V., Korotkova N.O., Avxentieva N.N. Determination of the peritectic reaction parameters in the Al–Ca–Mn system in the region rich in aluminum // Phys. Met. Metal. 2022. V. 123. № 8. P. 759–767.
  28. Белов Н.А. Диаграммы состояния тройных и четверных систем. МИСиС, 2007. 360 с.
  29. Mondolfo L.F. Aluminium Alloys: Structure and Properties. London: Butterworths, 1976. 640 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Microstructure of experimental alloys in the cast state, SEM: (a) 0Ca; (b) 0.5Ca; (c) 1Ca; (d) 2Ca; (d–f) 3Ca; (g–h) 4Ca.

Download (633KB)
3. Fig. 2. The effect of calcium content in alloys of the Al–Cu–Ca–Mn system (at 6% Cu and 2% Mn) on the concentrations of copper and manganese in the aluminum solid solution in the cast state.

Download (61KB)
4. Fig. 3. Maps of the distribution of elements in the microstructure of the cast alloy 2Ca, SEM (a), MRSA (b–d): b) Ca; c) Mn; d) Cu.

Download (323KB)
5. Fig. 4. Microstructure of experimental alloys after annealing at 540°C (6 h), SEM: (a) 0.5Ca; (b) 1Ca; (c) 2Ca; (d) 3Ca.

Download (223KB)
6. Fig. 5. Microstructure of experimental alloys after annealing at 580°C (6 h), SEM: (a) 1Ca; (b) 2Ca; (c) 3Ca; (d) 4Ca.

Download (247KB)
7. Fig. 6. DSC heating and cooling curves of 0Ca (a), 1Ca (b) and 3Ca (c) alloys.

Download (301KB)
8. Fig. 7. Predicted distribution of phase regions in the solid state in the Al–Cu–Mn–Ca system in the region of the aluminum angle.

Download (91KB)