Approaches to determining the limiting rate of selective laser melting of metals and alloys

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study provides a qualitative assessment of the maximum rate of metal powder processing, which ensures obtaining a high density product by selective laser melting. The maximum rate is determined by the characteristic time of the main physical processes for the formation of a solid material in the course of selective laser melting: heating, melting, and spreading.

Full Text

Restricted Access

About the authors

V. N. Chuvildeev

National Research Lobachevsky State University of Nizhni Novgorod

Email: semenycheva@nifti.unn.ru
Russian Federation, Nizhny Novgorod, 603022

A. V. Semenycheva

National Research Lobachevsky State University of Nizhni Novgorod

Author for correspondence.
Email: semenycheva@nifti.unn.ru
Russian Federation, Nizhny Novgorod, 603022

S. V. Shotin

National Research Lobachevsky State University of Nizhni Novgorod

Email: semenycheva@nifti.unn.ru
Russian Federation, Nizhny Novgorod, 603022

M. Yu. Gryaznov

National Research Lobachevsky State University of Nizhni Novgorod

Email: semenycheva@nifti.unn.ru
Russian Federation, Nizhny Novgorod, 603022

References

  1. Altıparmak S.C., Xiao B. A market assessment of additive manufacturing potential for the aerospace industry // J. Manuf. Process. 2021. V. 68. P. 728–738.
  2. Zhang S., Xu S., Pan Y., Li J., Li T. Mechanism Study of the Effect of Selective Laser Melting Energy Density on the Microstructure and Properties of Formed Renewable Porous Bone Scaffolds // Metals. 2022. V. 12. P. 1712.
  3. Liu G., Zhang X., Chen X., He Y., Cheng L., Huo M., Yin J., Hao F., Chen S., Wang P., Yi S., Wan L., Mao Z., Chen Z., Wang X., Cao Z., Lu J. Additive manufacturing of structural materials // Mater. Sci. Eng. R Rep. 2021. V. 145. P. 100596.
  4. Старицын М.В., Кузнецов П.А., Петров С.Н., Михайлов М.С. Композитная структура как упрочняющий фактор нержавеющей аустенитной хромоникелевой аддитивной стали // ФММ. 2020. Т. 121. № 4. С. 381–387.
  5. Зельдович В.И., Хомская И.В., Фролова Н.Ю., Хейфец А.Э., Абдуллина Д.Н., Петухов Е.А., Смирнов Е.Б., Шорохов Е.В., Клёнов А.И., Пильщиков А.А. Структура и механические свойства аустенитной нержавеющей стали, полученной методом селективного лазерного плавления // ФММ. 2021. Т. 122. № 5. С. 527–534.
  6. Грязнов М.Ю., Шотин С.В., Чувильдеев В.Н., Сысоев А.Н., Мелехин Н.В., Пискунов А.В., Сахаров Н.В., Семенычева А.В., Мурашов А.А. Улучшение физико-механических характеристик нелегированного титана ВТ1–0 и исследование влияния на них режимов селективного лазерного сплавления // ЖТФ. 2022. T. 93. № 2. С. 241–248.
  7. Казанцева Н.В., Ежов И.В., Виноградова Н.И., Ильиных М.В., Фефелов А.С., Давыдов Д.И., Оленева О.А., Карабаналов М.С. Влияние геометрии построения образца в методе селективного лазерного сплавления на микроструктуру и прочностные характеристики сплава Ti-6Al-4V // ФММ. 2018. Т. 119. № 11. С. 1138–1164.
  8. Metelkova J., Kinds Y., Kempen K., de Formanoir C., Witvrouw A., Van Hooreweder B. On the influence of laser defocusing in Selective Laser Melting of 316L // Addit. Manuf. 2018. V. 23. P. 161–169.
  9. Zhou H., Su H., Guo Y., Yang P., Liu Y., Shen Z., Zhao D., Liu H., Huang T., Guo M., Zhang J., Liu L., Fu H. Formation and evolution mechanisms of pores in Inconel 718 during selective laser melting: Meso-scale modeling and experimental investigations // J. Manuf. Process. 2022. V. 81. P. 202–213.
  10. Dilip J.J.S., Zhang S., Teng C., Zeng K., Robinson C., Pal D., Stucker B. Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting // Prog. Addit. Manuf. 2017. V. 2. P. 157–167.
  11. Yu G., Gu D., Dai D., Xia M., Ma C., Chang K. Influence of processing parameters on laser penetration depth and melting/re-melting densification during selective laser melting of aluminum alloy // Appl. Phys. A. 2016. V. 122. P. 891.
  12. Andani M.T., Dehghani R., Karamooz-Ravari M.R., Mirzaeifar R., Ni J. A study on the effect of energy input on spatter particles creation during selective laser melting process // Addit. Manuf. 2018. V. 20. P. 33–43.
  13. Yuan W., Chen H., Li S., Heng Y., Yin S., Wei Q. Understanding of adopting flat-top laser in laser powder bed fusion processed Inconel 718 alloy: simulation of single-track scanning and experiment // J. Mater. Res. Technol. 2022. V. 16. P. 1388–1401.
  14. Cai L., Liang S.Y. Analytical Modelling of Temperature Distribution in SLM Process with Consideration of Scan Strategy Difference between Layers // Materials. 2021. V. 14. P. 1869.
  15. Zhuang J.-R., Lee Y.-T., Hsieh W.-H., Yang A.-S. Determination of melt pool dimensions using DOE-FEM and RSM with process window during SLM of Ti6Al4V powder // Opt. Laser Technol. 2018. V. 103. P. 59–76.
  16. Chien C.-Y., Le T.-N., Lin Z.-H., Lo Y.-L. Numerical and experimental investigation into gas flow field and spattering phenomena in laser powder bed fusion processing of Inconel 718 // Mater. Des. 2021. V. 210. P. 110107.
  17. Lee K.-H., Yun G.J. A novel heat source model for analysis of melt Pool evolution in selective laser melting process // Addit. Manuf. 2020. V. 36. P. 101497.
  18. Lou S., Jiang X., Sun W., Zeng W., Pagani L., Scott P.J. Characterisation methods for powder bed fusion processed surface topography // Precision Engineering. 2019. V. 57. P. 1–15.
  19. Landry K., Eustathopoulos N. Dynamics of wetting in reactive metal/ceramic systems: linear spreading // Acta Mater. 1996. V. 44. № 10. P. 3923–3932.
  20. Zhang L.-Ch., Attar H. Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review // Adv. Eng. Mater. 2016. V. 8. № 4. P. 463–475.
  21. Kang N., Mansori M.E., Coniglio N., Coddet C. Nano-wear-induced behavior of selective laser melting commercial pure titanium // Procedia Manuf. 2018. V. 26. P. 1034–1040.
  22. Chen H., Zhang Y., Giam A., Yan W. Experimental and computational study on thermal and fluid behaviours of powder layer during selective laser melting additive manufacturing // Addit. Manuf. 2022. V. 52. P. 102645.
  23. Zhang D., Zhang P., Liu Z., Feng Z., Wang C., Guo Y. Thermofluid field of molten pool and its effects during selective laser melting (SLM) of Inconel 718 alloy // Addit. Manuf. 2018. V. 21. P. 567–578.
  24. Pawlowski L. Thick Laser Coatings: A Review // J. Therm. Spray Technol. 1999. V. 8. P. 279–295.
  25. Amin A.K.M.N. Titanium Alloys – Towards Achieving Enhanced Properties for Diversified Applications. Croatia: InTech, 2012. 242 p.
  26. Ao X., Liu J., Xia H., Yang Y. A Numerical Study on the Mesoscopic Characteristics of Ti-6Al-4V by Selective Laser Melting // Materials. 2022. V. 15. P. 2850.
  27. Akbari M., Saedodin S., Toghraie D., Shoja-Razavi R., Kowsari F. Experimental and numerical investigation of temperature distribution and melt pool geometry during pulsed laser welding of Ti6Al4V alloy // Opt. Laser Technol. 2014. V. 59. P. 52–59.
  28. Mills K.C. Recommended values of thermophysical properties for selected commercial alloys / ASM International, Materials Park (OH). 2002. 204 p.
  29. Valencia J., Quested P. Thermophysical Properties / ASM Handbook 15 Casting ASM Handbook Committee. 2008. P. 468–481.
  30. Mingxuan Y., Zhou Y., Bojin Q. Study on Surface Depression of Ti-6Al-4V with Ultrahigh-Frequency Pulsed Gas Tungsten Arc Welding // Metall. Mater. Trans. B. 2015. V. 46B. P. 1935–1941.
  31. Vitos L., Ruban A.V., Skriver H.L., Kollár J. The surface energy of metals // Surf. Sci. 1998. V. 411. P. 186–202.
  32. Wang Z., Yan W., Liu W.K., Liu M. Powder-scale multi-physics modeling of multi-layer multi-track selective lasermelting with sharp interface capturing method // Comput. Mech. 2019. V. 63. P. 649–661.
  33. Tomashchuk I., Sallamand P., Jouvard J.M. The modeling of dissimilar welding of immiscible materials by using a phase field method // Appl. Math. Comput. 2013. V. 219. P. 7103–7114.
  34. Iida T., Guthrie I.L. Physical properties of liquid materials. Oxford: Clarendon Press, 1988. 312 p.
  35. Touloukian Y.S., Powell R.W., Ho C.Y., Nicolaou M.C. Thermal Diffusivity: Metallic elements and alloys / Thermophysical Properties of Matter. V. 10. Springer New York, Washington. 1973. 752 p.
  36. Galantucci L.M., Lavecchia F., Percoco G. Experimental study aiming to enhance the surface finish of fused deposition modeled parts // CIRP Ann. Manuf. Technol. 2009. V. 58. P. 189–192.
  37. Touloukian Y.S., Powell R.W., Ho C.Y., Klemens P.G. Thermal Conductivity: Metallic elements and alloys / Thermophysical Properties of Matter. V. 1. Springer New York, Washington. 1970. 1584 p.
  38. Su Y., Li Z., Mills K.C. Equation to estimate the surface tensions of stainless steels // J. Mater. Sci. 2005. V. 40. P. 2201–2205.
  39. Lee Y.S., Nordin M., Babu S.S., Farson D.F. Influence of Fluid Convection on Weld Pool Formation in Laser Cladding // Weld. J. 2014. V. 93. P. 292–300.
  40. Xiao W., Li S., Wang C., Shi Y., Mazumder J., Xing H., Song L. Multi-scale simulation of dendrite growth for direct energy deposition of nickel-based superalloys // Mater. Des. 2019. V. 164. P. 107553.
  41. Elahi S.M., Tavakoli R., Boukellal A.K., Isensee T., Romero I., Tourret D. Multiscale simulation of powder-bed fusion processing of metallic alloys // Comp. Mater. Sci. 2022. V. 209. P. 111383.
  42. Mills K.C., Su Y.C. Review of surface tension data for metallic elements and alloys: Part 1 – Pure metals // Int. Mater. Rev. 2006. V. 51. № 6. P. 329–351.
  43. Welsh G., Loyer R., Collings W. Material Properties Handbook: Titanium alloys / ASM International, Materials Park (OH). 1994. 1169 p.
  44. Khoo Z.X., Liu Y., An J., Chu C.K., Shen Y.F., Kuo C.N. Review of Selective Laser Melted NiTi Shape Memory Alloy // Materials. 2018. V. 11. P. 519.
  45. Зиновьев В.Е. Теплофизические свойства металлов при высоких температурах. Справочник. Москва: Металлургия, 1989. 384 c.
  46. Лариков Л.Н., Юрченко Ю.Ф. Структура и свойства металлов и сплавов. Справочник. Киев: Наукова думка, 1985. 440 с.
  47. Black J., Hasting G. Handbook of Biomaterials properties. New York: Springer Science & Business Media, 1998. 560 p.
  48. Li Y., Gu D. Thermal behavior during selective laser melting of commercially pure Titanium powder: Numerical simulation and experimental study // Addit. Manuf. 2014. V. 1. P. 99–109.
  49. Транспортные свойства металлических расплавов: Справ. Изд. / Под. ред. Н.А. Ватолина. М.: Металлургия, 1995. 649 с.
  50. Wei P., Wei Z., Chen Z., He Y., Du J. Thermal behavior in single track during selective laser melting of AlSi10Mg powder // Appl. Phys. A. 2017. V. 123. P. 604.
  51. Dai D., Gu D. Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres // Appl. Surf. Sci. 2015. V. 355. P. 310–319.
  52. Liu B., Li B.-Q., Li Z., Bai P., Wang Y., Kuai Z. Numerical investigation on heat transfer of multi-laser processing during selective laser melting of AlSi10Mg // Results Phys. 2019. V. 12. P. 454–459.
  53. Du D., Haley J.C., Dong A., Fautrelle Y., Shu D., Zhu G., Li X., Sun B., Lavernia E.J. Influence of static magnetic field on microstructure and mechanical behavior of selective laser melted AlSi10Mg alloy // Mater. Des. 2019. V. 181. P. 107923.
  54. Tang M., Pistorius P.C., Narra S., Beuth J.L. Rapid Solidification: Selective Laser Melting of AlSi10Mg // JOM. 2016. V. 68. P. 960–966.
  55. Dai D., Gu D. Influence of thermodynamics within molten pool on migration and distribution state of reinforcement during selective laser melting of AlN/AlSi10Mg composites // Int. J. Mach. Tools Manuf. 2016. V. 100. P. 14–24.
  56. Yakout M., Elbestawi M.A., Veldhuis S.C. Density and mechanical properties in selective laser melting of Invar 36 and stainless steel 316L // J. Mater. Process. Technol. 2019. V. 266. P. 397–420.
  57. Caiazzo F., Alfieri V., Casalino G. On the Relevance of Volumetric Energy Density in the Investigation of Inconel 718 Laser Powder Bed Fusion // Materials. 2020. V. 13. № 3. P. 538.
  58. Attar H., Ehtemam-Haghighi S., Kent D., Wu X., Dargusch M.S. Comparative study of commercially pure titanium produced by laser engineered net shaping, selective laser melting and casting processes // Materials Science & Engineering A. 2017. V. 705. P. 385–393.
  59. Mun J., Yun B.G., Ju J., Chang B.M. Indirect additive manufacturing based casting of a periodic 3D cellular metal – Flow simulation of molten aluminum alloy // J. Manuf. Process. 2015. V. 17. P. 28–40.
  60. Ladani L., Romano J., Brindley W., Burlatsky S. Effective liquid conductivity for improved simulation of thermal transport in laser beam melting powder bed technology // Addit. Manuf. 2017. V. 14. P. 13–23.
  61. Bauerei A., Scharowsky T., Körner C. Defect generation and propagation mechanism during additive manufacturing by selective beam melting // J. Mater. Process. Technol. 2014. V. 214. P. 2522–2528.
  62. Уонг Х. Основные формулы и данные по теплообмену для инженеров. Москва: Атомиздат, 1979. 212 с.
  63. Mochizuki H. Consideration on Nusselt numbers of liquid metals under low Peclet number Conditions // Nucl. Eng. Des. 2018. V. 339. P. 171–180.
  64. Kou S., Limmaneevichitr C., Wei P.S. Oscillatory Marangoni Flow: A Fundamental Study by Conduction-Mode Laser Spot Welding // Weld. J. 2011. V. 90. P. 229–240.
  65. Грязнов М.Ю., Шотин С.В., Чувильдеев В.Н., Сысоев А.Н., Пискунов А.В., Котков Д.Н., Семенычева А.В., Сахаров Н.В., Мурашов А.А. Механические свойства нелегированного титана ВТ1–0, полученного методами послойного лазерного сплавления и интенсивной пластической деформации // Проблемы прочности и пластичности. 2022. Т. 84. № 4. С. 570–581.
  66. Максимкин И.П., Царёв М.В., Юхимчук А.А., Бойцов И.Е., Малков И.Л., Мокрушин В.В., Царёва И.А., Забродина О.Ю., Канунов А.Е., Кашафдинов И.Ф., Мусяев Р.К., Бучирин А.В., Балуев В.В., Вертей А.В., Шевнин Е.В., Шотин С.В., Чувильдеев В.Н., Грязнов М.Ю. Свойства поверхности частиц порошков стали 316L и сплава Inconel 718 и взаимодействие с водородом образцов, полученных из этих порошков методом ПЛС // Материаловедение. 2022. № 1. С. 7–17.
  67. Gilani N., Aboulkhair N.T., Simonelli M., East M., Ashcroft I.A., Hague R.J.M. From impact to solidification in drop-on-demand metal additive manufacturing using MetalJet // Additive Manufacturing. 2022. V. 55. P. 102827.
  68. Kaplan W.D., Chatain D., Wynblatt P., Carter W.C. A review of wetting versus adsorption, complexions, and related phenomena: the rosetta stone of wetting // J. Mater. Sci. 2013. V. 48. P. 5681–5717.
  69. Chattopadhyay K., Morales R.D., Nájera-Bastida A., Rodrìguez-Àvila J., Muñiz-Valdés C.R. Assessment of Nusselt Number Correlations for Liquid Metals Applied in Alloying Processes in Turbulent Flows // Metall. Mater. Trans. B. 2021. V. 52. P. 1789–1804.
  70. Liu B., Fang G., Lei L., Yan X. Predicting the porosity defects in selective laser melting (SLM) by molten pool geometry // Int. J. Mech. Sci. 2022. V. 228. P. 107478.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Map in the axes “volume power density” – “layer thickness” for the PLS of the Ti6Al4V alloy. The modes are taken from [10]. Triangular markers highlight the values ​​calculated by formula (24), round markers – the values ​​calculated by formula (25), and square markers – those calculated by formula (26). The experimental values ​​of the mode parameters from [10] and the values ​​of the geometric parameters and the Nusselt number from expression (27) were substituted into the formulas. The lines represent a linear approximation of the positions of these points.

Download (204KB)
3. Fig. 2. Map in the axes “volume power density” – “layer thickness” for the PLS of 316L steel. The modes from [56] were taken for two scanning speeds (1) – 1000 mm/s and (2) – 500 mm/s. Triangular markers highlight the values ​​calculated by formula (24), round markers – the values ​​calculated by formula (25), and square markers – those calculated by formula (26). The experimental values ​​of the mode parameters from [56] and the values ​​of the geometric parameters and the Nusselt number from expression (27) were substituted into the formulas. The lines represent a linear approximation of the positions of these points.

Download (215KB)