Effect of chromium content on the thermal stability of single-phase submicrocrystalline Ni–Cr alloys

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The thermal stability of single-phase Ni–Cr alloys (with 2, 5, and 12.5 at % Cr), in which the submicrocrystalline (SMC) structure is formed by high-pressure torsion, is studied. Annealing-induced variations of the hardness and grain size, and changing the uniformity of recrystallized structure are analyzed. The alloying of nickel with chromium increases the temperature of the onset of recrystallization of deformed alloy by 150–250°С and temperature of the onset of active grain growth by 200–400°С in accordance with the increase in the chromium content. The recrystallization of the studied SMC alloys develops via the priority growth of individual nuclei. The increase in the chromium content in the alloys from 2 to 12.5% favors the decrease in the grain size and increase in the size uniformity of the recrystallized structure.

Full Text

Restricted Access

About the authors

K. Yu. Karamyshev

M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences

Author for correspondence.
Email: highpress@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

L. M. Voronova

M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences

Email: highpress@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

T. I. Chashchukhina

M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences

Email: highpress@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

M. V. Degtyarev

M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences

Email: highpress@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

References

  1. Горелик С.С., Добаткин С.В., Капуткина Л.М. Рекристаллизация металлов и сплавов. М.: Изд-во МИСиС, 2005. 431 с.
  2. Zhang H.W., Huang X., Pippan R., Hansen N. Thermal behavior of Ni (99.967% and 99.5% purity) deformed to an ultra-high strain by high pressure torsion. Acta Mater. 2010. V. 58. P. 1698–1707.
  3. Zhang N., Gunderov D., Yang T.T., Cai X.C., Jia P., Shen T.D. Influence of alloying elements on the thermal stability of ultra-fine-grained Ni alloys // J. Mater. Sci. 2019. V. 54. P. 10506–10515.
  4. Koch C.C., Scattergood R.O., Darling K.A., Semones J.E. Stabilization of nanocrystalline grain sizes by solute additions // J. Mater. Sci. 2008. V. 43. P. 7264–7272.
  5. Дегтярев М.В., Воронова Л.М., Губернаторов В.В., Чащухина Т.И. О термической стабильности микрокристаллической структуры в однофазных металлических материалах // ДАН. 2002. Т. 386. № 2. С. 180–183.
  6. Weissmiiller J. Alloy effects in nanostructures // Nanostruct Mater. 1993. V. 3. P. 261–272.
  7. Dudova N., Belyakov A., Kaibyshev R. Recrystallization behavior of a Ni-20%Cr alloy subjected to severe plastic deformation // Mater. Sci. Eng. A. 2012. V. 543. P. 164–172.
  8. Voronova L.M., Degtyarev M.V., Chashchukhina T.I., Krasnoperova Yu.G., Resnina N.N. Effect of dynamic recovery on structure formation in nickel upon high-pressure torsion and subsequent annealing // Mater. Sci. Eng. A. 2015. V. 639. Р. 155–164.
  9. Карамышев К.Ю. Термическая стабильность субмикрокристаллической структуры, сформированной методом “сдвиг под давлением” в Ni и сплаве Ni-2%Cr // Frontier Mater. & Techn. 2023. № 4. С. 41–51.
  10. Keskar Nachiket, Mani Krishna K.V., Gupta Chiradeep, Singh J.B., Tewari R. The effect of Cr content on the microstructural and textural evolution and the mechanical properties of Ni-Cr binary alloys // Mater. Today Comm. 2022. V. 33. P. 104831.
  11. Родионов Д.П., Гервасьева И.В., Хлебникова Ю.В. Текстурованные подложки из никелевых сплавов. Екатеринбург: РИО УрО РАН, 2012. 110 с.
  12. Ustinovshikov Y. Phase transformations in alloys of the Ni–Cr system // J. Alloys Compounds. 2012. V. 543. P. 227–232.
  13. Чащухина Т.И., Воронова Л.М., Дегтярев М.В., Покрышкина Д.К. Деформация и динамическая рекристаллизация в меди при разной скорости деформирования в наковальнях Бриджмена // ФММ. 2011. Т. 111. № 3. С. 315–324.
  14. Осинников Е.В., Мурзинова С.А., Истомина А.Ю., Попов В.В., Столбовский А.В., Фалахутдинов Р.М. Зернограничная диффузия 57Co в ультрамелкозернистом никеле, полученном интенсивной пластической деформацией // ФММ. 2021. Т. 122. № 10. С. 1049–1053.
  15. Сахаров Н.В., Чувильдеев В.Н. Исследование влияния примесей на первичную рекристаллизацию в чистых металлах // ФММ. 2022. Т. 123. № 8. С. 851–858.
  16. Новиков В.Ю. Вторичная рекристаллизация. М.: Металлургия, 1990. 128 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Microstructure of Ni–12.5Cr (a) and Ni–2Cr (b) alloys after SPD deformation and the dependence of the average size of microcrystallites on the chromium content (c); a, b – dark-field images in the (111)γ reflection, TEM.

Download (173KB)
3. Fig. 2. The effect of chromium alloying on the hardness of nickel during SPD deformation and subsequent annealing.

Download (205KB)
4. Fig. 3. Microstructure of nickel (a) and Ni–2Cr alloy (b) after SPD deformation and annealing at 200°C for 1 h; a – EBSD map of grains in random colors, SEM; b – dark-field image in the (111)γ reflection, TEM.

Download (234KB)
5. Fig. 4. Microstructure (a, c) and histogram of grain distribution by misorientation angles (b) of the Ni–2Cr alloy and microstructure of Ni–5Cr (d) and Ni–12.5Cr (d) alloys after SPD deformation and annealing at 300°C for 1 h; a – EBSD map of grains in random colors, SEM; c, d – bright-field images, TEM.

Download (501KB)
6. Fig. 5. Microstructure of Ni–2Cr (a, b), Ni–5Cr (c, d) and Ni–12.5Cr (d) alloys after SPD deformation and annealing at 400°C for 1 h; a, c – EBSD maps of grains in random colors, SEM; b, d, d – bright-field images, TEM.

Download (646KB)
7. Fig. 6. Microstructure of Ni–5Cr (a–g) and Ni–12.5Cr (d, e) alloy after SPD deformation and annealing at 500°C (a, b) and 600°C (c–f), 1 h; a, c, d – EBSD maps of grains in arbitrary colors, SEM, b, d, e – bright-field images, TEM.

Download (647KB)
8. Fig. 7. Effect of chromium alloying on the average grain size of nickel after SPD deformation and annealing.

Download (150KB)
9. Fig. 8. Histograms of grain size distribution in Ni (a) and Ni–2Cr alloy (b–d) after SPD deformation and annealing at 200°C (a, b); 300°C (c); 400°C (d).

Download (166KB)
10. Fig. 9. Histograms of grain size distribution in Ni–5Cr and Ni–12.5Cr alloys after SPD deformation and annealing at 300–600°C.

Download (462KB)